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Abstract

In the present study, we investigate the electronic properties and optical response of

armchair graphane nanoribbons (NRs). They have shown to exhibit potential applica-

tions such as nanoscale-optical materials, optoelectronics devices and transistors. We

have perfomed first principles calculation for the linear optical response with the use of

Density Functional Theory (DFT) within the Local Density Approximation (LDA). We

have obtained the electronic band structures of graphane systems and of the following

armchair graphane NRs: C6H10, C10H14, C14H18, C18H22. Furthermore, we have ob-

tained the respective spectra for the real and imaginary parts of the dielectric function.

We have found that, graphane and the graphane NRs are semiconductor materials, in

contrast to graphite and graphene which are conductor materials. The band gap energy

of armchair graphane NRs decreases as the width of the NR increases. We also found

that the magnitude of the imaginary part of the dielectric function of graphane NRs

shows a general decreasing of its magnitude in the whole range of frequencies as the NR

width reduces. Besides, our results show that the optical response of graphane NRs is

anisotropic.
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Chapter 1

Introduction

In the past years, a new class of materials has been discovered called two-dimensional

(2D) crystals. Among them, there is graphene, which is a carbon-based system. It

is a single planar sheet of sp2-bonded carbon atoms with a hexagonal Bravais lat-

tice structure. The graphene monolayers were discovered by Geim and Novoselov in

2004 [1](Novoselov2004). They obtained experimentally few monolayer samples of

graphene including that of one monolayer by the method of mechanical exfolliation

[1](Novoselov2004). Since then there has been great interest on studies of graphene

or graphene-like 2D materiales that contain one or few atomic monolayers. In gen-

eral, their physical properties depend largely on their dimensions. The graphene struc-

tures show electronic properties quiet different from their respective bulk structures[2,

3](Novoselov2005,Xia2014),[4, 5](Xia2014b,Morpurgo2015). The graphene monolayer

is considered to be the basic building block of graphitic materials. Graphite is identi-

fied as a three-dimensional (3D) stacking structure from single-carbon-layer structures

[6](Singh2011). Figure 1.1(a) shows the graphite structure composed of graphene mono-

layers. It has a Bravais hexagonal lattice. The graphene planar sheet shown in Figure

1.1(b) has two carbon atoms that are within the unit cell. The bond length between

carbon atoms from this material is 1.42 Å and its lattice constant is equal to 2.46 Å.

Both graphite and graphene are conductor materials, in other words, it means that

they have a zero energy gap between their respective valence and conduction bands.

Figure 1.2 shows schematically the band energies of a conductor (a), semiconductor (b),

and insulator (c) [7](Castro2009). There is a relatively small energy band gap for a

semiconductor, while for an insulator the energy band gap is large.

3
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Z

Y
(a) (b)

Figure 1.1: Graphite and graphene structures.

After years of research many graphene properties have been measured or calculated.

Just a few years ago, researchers reported that graphene have a high charge mobility

of µ =230,000 cm2/Vs, a 3000 W/mK of thermal conductivity, a strength of 130 GPa,

a surface area equal to 2600 m2/g [8](Mendez2012). The properties of a single layer,

bilayer or few-layers graphene are different but each property from these are used in

specific cases [6](Singh2011). For example, it was discovered that a thick sample of

graphene absorbs 2.3% of the white light from an incident beam, which is and excep-

tional electronic feature[9](Nair2008). The graphene-based materials have amazing elec-

tronic and structural properties including high electrical and thermal conductivities as

well as unique optical properties and chemical stability. Graphene has been impacted by

the importance of technology applications including transparent and flexible electronics,

capacitors, batteries, transistors, data storage, sensors, printable inks, barrior materi-

als, microelectromechanical systems, nanoelectromechanical systems and nanocompos-

ites [10](Castro2011) [11](Rodriguez2015).

Few-layer graphene structures also show interesting properties. For example, the

bilayer graphene exhibits a gate-tunable band gap. [12](Castro2007) Meanwhile the tri-

layer graphene is a semimetal with a gate tunable overlap between the conduction and

the bands. Recently, it has been theoretically suggested the electronic properties depend

on the number of layers and on layer stacking. For instance, high transparency or perfect

reflection depends on the graphene system structure.
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Figure 1.2: Scheme of the energy bands of: (a) conductor, (b) semiconductor and (c) insulator.

Efforts have been made to open tha band gap in graphene. This will make graphene

interesting because of the potential optoelectronic applications it will have. For instance,

when a perpendicular electric field is applied on graphene, the result is to open the

band gap but this affects the pseudospin from the charge carriers. A conceptually novel

construction is the use of the pseudospin, proposed by theoretical schemes that find the

posibility to get pseudospintronic devices[13](Sahhin2015). Another method that have

been used in order to modify the electronic properties of graphene is by the adsorption

of foreign atoms on the graphene sheet. For example, boron, nitrogen or hydrogen

atoms can be adsorbed on graphene. The respective band structure has been reported in

experimental studies by substitution of atoms or by adsorption of foreign atoms in the

surface of graphene [14](Craciun2009).

Graphane is the structure composed of a planar sheet of sp3-bonded carbon atoms

where every carbon atom bonds to one hydrogen atom. This system was called that

way by Sofo et al., in 2007 [15](Sofo2007). The chair, boat, stirrup, armchair and twist-

boat structures are various of their possible configurations. The chair structure is the

most stable [15](Sofo2007). Unlike graphene, graphane is a semiconductor material. It

means that there is an energy band gap between the highest valence band and the lowest

conduction band. The energy band gaps are 3.5 and 3.7 eV for the chair and boat

structures, respectively.

The experimental synthesis of graphane was performed by Elias et al., in 2009

[16](Elias2009). They used three samples of graphene crystals for their hydrogenation.
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•Interconects
•High mobility, RF applications
•Vertical scaling of circuits,

0 eV

Graphene
Band gap

6 eV

2D Insulator

•High mobility, RF applications
•Digital circuits, transistor scaling
•Vertical scaling of circuits,

stacking stacking

•Digital circuits, transistor scaling
•Vertical scaling of circuits,
stacking
•Ultrathin dielectrics

•Nanomechanical sensors-relays
•Biological platform, bioelectronics
•Photonics, photovoltaics,
transparent electronics
•Mechanically compliant electronics

•Nanomechanical sensors-relays
•Photonics, photovoltaics,
transparent electronics
•Mechanically compliant electronics
•Heterostructures tunneling

•Nanomechanical sensors-relays
•Biological platform, bioelectronics
•Mechanically compliant electronics
•Heterostructures tunneling

Figure 1.3: Technological applications of carbon-based structures depending on their band gap
energy [13](Sahhin2015).

These samples were exposed to a cold hydrogen plasma with low-pressure (0.1 mbar)

hydrogen-argon mixture of 10% H2 and with dc plasma ignited between two aluminum

electrodes. In order to avoid a possible damage by energetic ions they kept the samples

30 cm away from the discharge zone. The plasma treatment to reach the saturation

required 2 hours and they corroborated the changes induced by hydrogenation through

Raman spectroscopy [16](Elias2009).

Their technological applications are possible through the control of its electronic and

optical properties. Graphane has potential technological applications. For example, the

H2-storage in nano scale, design of thermoelectric applications through the stability of

their atomic binding, as well as their low cost and easy synthesis. The characteristics

of geometric structures as the bond lengths, angles, and rise of carbon atoms, markedly

depend on the concentration and distribution of hydrogen atoms. [17](Huang2016).

Figure 1.3 shows different technological applications that carbon-based structures might

have depending on their band gap energy [18](Sahin2015).

Graphane can be cut into large narrow atomic stripes or bands called nanoribbons

(NRs). The graphane NRs are classified according to the orientation of the atomic bands

or termination of the atomic edges as armchair and zigzag structures[19](Ataca2010).

An example of graphane NRs structure is shown in Figure 1.4. In this 2D graphane

structures, the electronic and optical properties are modified as a result of the shorten-

ing of their dimensions. For instance, their band gap energy increases[18](Sahin2015).

Besides, their band gap energy depends on the hydrogenation percentage. The electronic

and magnetic properties of graphane NRs have been studied but there are few studies

of their optical properties [20](Yang2012). The increase of graphane energy band gap

exhibits possible applications in nano scale materials, optoelectronics and transistors.
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The study of the optical and electronic properties of graphane NRs is fundamental for

their characterization and possible applications [21](Hu2015).

Figure 1.4: Unit cell of a graphane NR. Hydrogen and carbon atoms are indicated by blue and
orange spheres, respectively

1.1 Objectives

The objectives of this thesis are based on the study of the electronic structure and

linear optical response of nanoscopic systems based on graphene. Calculations of energy

band structure, and dielectric function of the studied structures are performed. The

calculations are based on Density Functional Theory (DFT).

1.1.1 General objective

The general objective of this thesis is:

• To characterize the electronic and optical properties of nanoscopic systems based

on graphene by first principle calculations.
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1.1.2 Specific objectives

To achieve the general objective we propose the following specific objectives:

• To calculate the electronic structure and optical response of graphane nanostruc-

tures based on DFT calculations and using pseudopotentials.

• To obtain the ground state structure of the following graphane NRs: C6H10, C10H14,

C14H18, C18H22.

• To determine the electronic band structure and linear optical response of C6H10,

C10H14, C14H18, C18H22 graphane NRs.

1.2 Hypothesis

Graphene is an isotropic material, meanwhile a graphene-based NRs are anisotropic.

Thus an anisotropic optical response is expected in graphane NRs. Therefore, we propose

the following hypothesis of investigation:

• The optical response of graphane nanostructures in the form of NRs is anisotropic,

and their band gap energy depends on their lateral size.

1.3 Justification

The optical responses of graphane NRs are very important for designing electronics de-

vices with a high technological potential. Additional properties of they can be obtained

through edges hydrogenization, adatom adsorption, vacancy creation, edge profiling, and

superlattices[19](Ataca2010). Nevertheless, graphane NRs on their optical properties

there are few research and it have remained unexplored. Due to their optical properties

they are suitable for diverse applications such as nanoscale-optical and optoelectronic

devices[20](Yang2012).
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1.4 Outline of the thesis

We present in Chapter 2 the crystal structure and the hexagonal lattice as well the vectors

of the graphite, graphene, graphane and graphane NRs. Also we have shown their atomic

positions and the atomic structure for each system. In Chapter 3 we developed the

methodology of first principles and the operation of the computational tool. The band

structure of each system and their band gap energy is shown in Chapter 4. We have

shown the optical response of the graphane and graphane NRs such as the imaginary

portion, ε2, of the dielectric function in Chapter 5 and finally we conclude in Chapter 6.



Chapter 2

Atomic crystals

2.1 Crystal lattice

An atomic crystal lattice is a periodic ordered arrangement of a group of atoms in space.

This group is known as basis and form a unit cell. Thus the translation in space of this

cell maps the whole crystal lattice called Bravais lattice. A primitive cell is that of with

the minimum volume cell. A Wigner-Seitz cell is a primitive cell centered on a lattice

point, in other words it the most compact cell that is symmetric around the origin. The

procedure to find it is: firstable, take any lattice point, secondable, draw a line to all

nearby lattice points. Then a normal plane is drawn to these lines. The Wigner-Seitz

cell is that enclosed region formed by the volume bounded by these planes. In reciprocal

space the corresponding cell is known as a Brillouin zone (BZ).

The crystal lattice is formed by a set of infinite lattice points that replace and represent

each group of atoms. Every lattice point R can be found in space by three translational

vectors a1, a2 and a3 in the form

R = la1 + na2 +ma3, (2.1)

where l, n,m are integers. Hence, the unit cell is characterized by the magnitude of the

translational vectors and the angles between the translational vectors. Depending of their

values seven different crystal systems are formed: cubic, hexagonal, trigonal, tetragonal,

ortorrombic, monoclinic and triclinic. In a two-dimensional (2D) space, there are four

10
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(a)

a⃗1

a⃗2

dCC

a
0

(b)

b⃗1

b⃗2

Γ M

K

Figure 2.1: Real (a) and reciprocal (b) lattices for the 2D hexagonal structure of graphene.
In (a), the translational lattice vectors are shown by a1, and a2; a0 is the lattice constant, and
dCC is the carbon-carbon distance. In (b), translational reciprocal lattice vectors are shown by
b1, and b2. Γ, M and K are special wave vector points, which define the irreducible Brillouin
zone.

crystal systems: squared, rectangular, centered rectangular, hexagonal and oblique. For

instance, in Figure 2.1(a), we can see the 2D hexagonal lattice for graphene.

2.2 Reciprocal lattice

The reciprocal lattice is that lattice formed in momentum space or k space. The real and

reciprocal lattices are Fourier transform of each other. In crystallography, the reciprocal

lattice of a Bravais lattice is a set of all K points such that the following expression

eiK·R = 1 (2.2)

is satisfied for all real lattice points R. The corresponding reciprocal translation vectors

are obtained by the expressions

b1 = 2π
a2 × a3

a1 · |(a2 × a3)|
; b2 = 2π

a3 × a1

a1 · |(a2 × a3)|
; b3 = 2π

a1 × a2

a1 · |(a2 × a3)|
. (2.3)



12 Chapter 2. Atomic crystals

Hence, every reciprocal lattice point K can be found in space by the use of the

reciprocal translational vectors b1,b2 and b3 in the form

K = pb1 + qb2 + sb3, (2.4)

where p, q, s are integers. In Figure 2.1(b), the reciprocal lattice is shown. The transla-

tional reciprocal lattice vectors are indicated as well as the special k points, Γ, M and

K, that define the irreducible BZ.

2.3 Graphite

Graphite is a three-dimensional (3D) atomic layered structure formed by carbon atoms.

Its crystal symmetry is hexagonal and belongs to the space group P63/mmc. The carbon

atoms on the plane of the layer bond covalently by sp2 hybridization of atomic orbitals

called σ orbitals. Meanwhile, the carbon layers are weakly bonded by Wan der Vals

forces that arise from nonhybridized pz orbitals called π orbitals that are perpendicular

to the graphitic planes. The graphite structure is shown in Figure 2.2. Two consecutive

layer are shifted to each other, such that its stacking is of the form AB AB. The unit cell

of graphite is shown in Figure 2.2(b). There are four carbon atoms per unit cell. The

interatomic bonding is dC−C =1.42 Å and its in-plane lattice constant a0 is equal to 2.46

Å due to: a0 = |a1| = |a2| =
√

3 dC−C = 2.46 Å. The length between sheets is of 3.35 Å

and the out-of-plane lattice constant is c0 = 6.7 Å.

Z

Y

6.7Å 

Z

Y

(a) (b)

Figure 2.2: Atomic structure of graphite (a) and its unit cell (b).
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The primitive translational lattice vectors in real space a1, a2 and a3 of graphite are:

a1 = a0(
√

3,
1

2
, 0), (2.5)

a2 = a0(
√

3,−1

2
, 0), (2.6)

a3 = c0(0, 0, 1). (2.7)

The corresponding primitive lattice vectors in reciprocal space b1, b2 and b3 of

graphite are:

b1 =
2π

a0
(

1√
3
, 1, 0), (2.8)

b2 =
2π

a0
(

1√
3
,−1, 0), (2.9)

b3 =
2π

c0
(0, 0, 1). (2.10)

2.4 Graphene

Graphene is identified as a two-dimensional (2D) structure formed by one atomic plane

of the graphite structure. The graphene structure is shown in Figure 2.3. This material

has two carbon atoms per unit cell, which is indicated by the rectangle in black in Figure

2.3. We calculated an interatomic bonding of 1.42 Å and their lattice constant is equal

to 2.443 Å. Our results were compared with reported values. We got a good comparison.

The results obtained by Sahin et al., [7](Castro2009) are 1.42 Å for the bond length

between carbon atoms and 2.46 Å for the lattice constant.

The primitive translational lattice vectors a1 and a2 of graphene are

a1 = a0(
√

3,
1

2
), (2.11)

a2 = a0(
√

3,−1

2
). (2.12)
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Figure 2.3: Graphene structure. The unit cell is indicated by the rectangle in black

The primitive reciprocal translational lattice vectors b1 and b2 for graphene are

b1 =
2π

a0
(

1√
3
, 1), (2.13)

b2 =
2π

a0
(

1√
3
,−1). (2.14)

2.5 Graphane

Graphane is identified as a two-dimensional (2D) structure formed by the adsorption of

hydrogen atoms on the graphene structure. There is one hydrogen atom bonding to each

carbon atom. There are seven reported isomers of graphane or possible graphane atomic

configurations: chair, boat, stirrup, armchair, TB-chair, twist-boat, and tricycle [18].

The most stable configuration is the chair graphane structure. In this configuration,

the hydrogen atoms bond alternately above and below to carbon atoms. Figure 2.4

shows the perspective and top views of graphane. In the following, we consider the chair

configuration for graphane. This material has two carbon atoms and two hydrogen atoms

per unit cell. Figure 2.5 shows the atomic unit that forms the unit cell. The sp2 bonding

on graphene is converted to sp3 bonding on graphane through the hydrogen-carbon bonds.

The space group of the chair configuration is P -3m1, number 164. The bond length

between carbon atoms (dCC) of this material is (dCC) = 1.536 Å, the carbon-hydrogen

bond length is (dCH) = 1.104 Å, and the respective lattice constant is a0 = 2.539 Å
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(a)

(b)

Figure 2.4: Perspective (a) and top (b) views of the graphane structure. Carbon (hydrogen)
atoms are indicated by balls in orange (blue).

[13](Sahhin2015). Although, the results reported by Sofo et al., [15] are the following:

dCC =1.52 Å, dCH =1.11 Å and the lattice constant a0 = 2.516 Å.

The primitive translation lattice vectors a1 and a2 for graphane are

a1 = a0(
√

3,
1

2
), (2.15)

a2 = a0(
√

3,−1

2
). (2.16)

Figure 2.5: The atomic unit that forms the unit cell of graphane. Carbon (hydrogen) atoms
are indicated by balls in orange (blue).
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x y z
C1 1.44626 0.00000 0.22335
C2 2.89252 0.00000 -0.22335
H1 1.44626 0.00000 1.33981
H2 2.89252 0.00000 -1.33981

Table 2.1: Atomic positions for graphane in Å.

The primitive reciprocal lattice vectors b1 and b2 for graphane are

b1 =
2π

a0
(

1√
3
, 1), (2.17)

b2 =
2π

a0
(

1√
3
,−1). (2.18)

We have calculated the corresponding geometric atomic structure of graphane through

first principles calculation. For that, we have minimized the total energy and done a

convergence study. We have obtain the atomic positions in Å of graphane, which are

shown in Table 2.1. We also obtained the following results fo the bond lenghts and lattice

constant: dCC = 1.5137 Å, dCH = 1.1164 Å, a0 = 2.505 Å.

2.6 Graphane nanoribbons

Two-dimensional (2D) graphane structures recieve the name of nanoribbons (NRs) when

one of the lateral sizes of graphane is finite, that is it has a finite width. Meanwhile,

the other perpedicular lateral size keeps being infinite. Hence, NRs can be consider as

a one-dimensional (1D) structures. Graphane NRs can be classified depending on their

orientation in armchair and zigzag configurations [19](Ataca2010). The width M of the

armchair graphane NRs is defined by the number of C-C dimers in the unit cell which

is parallel to the axis of the nanoribbon (NR). Figure 2.6 shows the side view of a chair

graphane NR of width M. The axis of the NR is along the x direction.

The primitive translation vector of a graphane NR a1 is

a1 = (1, 0, 0)a0. (2.19)
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Figure 2.6: Top view of the atomic structure of a chair graphane NR of width M. Carbon
(hydrogen) atoms are indicated by balls in orange (blue).

where a0 is the lattice constant.

The primitive reciprocal lattice vector b1 of a graphane NRs is

b1 =
2π

a0
(1, 0, 0). (2.20)

The graphane NRs can be bare or passivated with hydrogen at the edges. This has

the effect of removing the charge density at the edges of the NR due to edge state bands

[19](Ataca2010). In our study , we consider graphane NR passivated with hydrogen at

the edges. The studied atomic NRs structures are: C6H10, C10H14, C14H18, and C18H22.

Their respective atomic unit cell arrangements are shown in Figure 2.7.

We have perfomed first principles calculations for minimizing the total energy of these

structures, and obtained their lattice constant and corresponding atomic positions. A

convergence study was done. The C6H10 graphane NR has sixteen atoms in its unit
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(a) (b)

(c) (d)

Figure 2.7: Atomic unit cell of armchair graphane NRs: (a) C6H10, (b) C10H14, (c) C14H18,
and (d) C18H22. Carbon and hydrogen atoms are shown by balls in orange and blue, respectively.

cell. The calculated lattice constant is a1 =4.4115 Å and the width of this structure is

a2 =12.5224 Å . The atomic positions and bond lengths in Å of this structure are shown

in Table 2.2. The C10H14 graphane NR has twenty-four atoms in its unit cell. The lattice

constant we calculated is a1 =4.3752 Å and the width of this structure is a2 =15.0185

Å . The atomic positions and bond lengths in Å of this structure are shown in Table

2.3. The C14H18 graphane NR has thirty-two atoms in its unit cell. The lattice constant

we calculated is a1 =4.3632 Å and the width of this structure is a2 =17.5279 Å . The

atomic positions and bond lengths in Å of this structure are shown in Table 2.4. The

C18H22 graphane NR has forty atoms in its unit cell. The lattice constant we calculated

is a1 =4.3573 Å and the width of this structure is a2 =20.0344 Å . The atomic positions

and bond lengths in Å of this structure are shown in Table 2.5.
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x y z
C1 -0.72507 -1.23293 0.21894
C2 0.72507 -1.23293 -0.21894
C3 1.48066 0.00000 0.23450
C4 2.93015 0.00000 -0.23450
C5 -0.72507 1.23293 0.21894
C6 0.72507 1.23293 -0.21894
H1 -0.77468 -1.28320 1.32721
H2 0.77468 -1.28320 -1.32721
H3 1.49261 0.00000 1.34869
H4 2.91821 0.00000 -1.34869
H5 -0.77468 1.28320 1.32721
H6 0.77468 1.28320 -1.32721
H7 -1.22020 2.14657 -0.15075
H8 1.22020 2.14657 0.15075
H9 -1.22020 -2.14657 -0.15075
H10 1.22020 -2.14657 0.15075

dC1−H15 = 1.10298 dH7−C1 = 1.11051
dC2−H16 = 1.10298 dH8−C2 = 1.11051
dC3−H9 = 1.11425 dH9−C3 = 1.11425
dC4−H10 = 1.11425 dH10−C4 =1.11425
dC5−H13 = 1.10298 dH11−C5 =1.11051
dC6−H14 = 1.10298 dH12−C6 = 1.11051
dH13−C5 = 1.10298 dH14−C6 = 1.10298
dH15−C1 = 1.10298 dH16−C2 = 1.10298

Table 2.2: Atomic positions and bond lengths for the C6H10 graphane NR in Å units
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x y z
C1 -0.71968 -1.23600 0.22168
C2 0.71968 -1.23600 -0.22168
C3 1.46303 -0.00014 0.22952
C4 2.91226 -0.00014 -0.22952
C5 -0.73048 1.25155 0.22059
C6 0.73048 1.25155 -0.22059
C7 1.46303 2.50323 0.22952
C8 2.91226 2.50323 -0.2295
C9 -0.71968 3.73910 0.22168
C10 0.71968 3.73910 -0.22168
H1 -0.76635 -1.28538 1.32939
H2 0.76635 -1.28538 -1.32939
H3 1.47031 0.00756 1.34463
H4 2.90497 0.00756 -1.34463
H5 -0.73410 1.25155 1.33710
H6 0.73410 1.25155 -1.33710
H7 1.47031 2.49554 1.34463
H8 2.90497 2.49554 -1.34463
H9 -0.76635 3.78848 1.32939
H10 0.76635 3.78848 -1.32939
H11 -1.21961 4.64895 -0.14845
H12 1.21961 4.64895 0.14845
H13 -1.21961 -2.14586 -0.14845
H14 1.21961 -2.14586 0.14845

dC1−H23 = 1.10217 dH11−C1 = 1.10979
dC2−H24 = 1.10217 dH12−C2 = 1.10979
dC3−H13 = 1.11516 dH13−C3 = 1.11516
dC4−H14 = 1.11516 dH14−C4 = 1.11516
dC5−H15 = 1.11652 dH15−C5 = 1.11652
dC6−H16 = 1.11652 dH16−C6 = 1.11652
dC7−H17 = 1.11516 dH17−C7 = 1.11516
dC8−H18 = 1.11516 dH18−C8 = 1.11516
dC9−H21 = 1.10217 dH19−C9 = 1.10979
dC10−H22 = 1.10217 dH20−C10 = 1.10979

Table 2.3: Atomic positions and bond lengths for the C10H14 graphane NR in Å units.
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x y z
C1 -0.71899 -1.23744 0.22096
C2 0.71899 -1.23744 -0.22096
C3 1.45863 0.00024 0.22931
C4 2.90466 0.00024 -0.22931
C5 -0.72753 1.25119 0.22308
C6 0.72753 1.25119 -0.22308
C7 1.45463 2.50400 0.22448
C8 2.90866 2.50400 -0.22448
C9 -0.72753 3.75681 0.22308
C10 0.72753 3.75681 -0.22308
C11 1.45863 5.00776 0.22931
C12 2.90466 5.00776 -0.22931
C13 -0.71899 6.24543 0.22096
C14 0.71899 6.24543 -0.22096
H1 -0.76698 -1.28825 1.32853
H2 0.76698 -1.28825 -1.32853
H3 1.46513 0.00932 1.34435
H4 2.89816 0.00932 -1.34435
H5 -0.72864 1.24714 1.33934
H6 0.72864 1.24714 -1.33934
H7 1.45530 2.50400 1.34055
H8 2.90799 2.50400 -1.34055
H9 -0.72864 3.76086 1.33934
H10 0.72864 3.76086 -1.33934
H11 1.46513 4.99868 1.34435
H12 2.89816 4.99868 -1.34435
H13 -0.76698 6.29624 1.32853
H14 0.76698 6.29624 -1.32853
H15 -1.21993 7.15353 -0.15170
H16 1.21993 7.15353 0.15170
H17 -1.21993 -2.14553 -0.15170
H18 1.21993 -2.14553 0.15170

dC1−H31 = 1.10203 dH15−C1 = 1.10977
dC2−H32 = 1.10203 dH16−C2 = 1.10977
dC3−H17 = 1.11510 dH17−C3 = 1.11510
dC4−H18 = 1.11510 dH18−C4 = 1.11510
dC5−H19 = 1.11626 dH19−C5 = 1.11626
dC6−H20 = 1.11626 dH20−C6 = 1.11626
dC7−H21 = 1.11607 dH21−C7 = 1.11607
dC8−H22 = 1.11607 dH22−C8 = 1.11607
dC9−H23 = 1.11626 dH23−C9 = 1.11626
dC10−H24 = 1.11626 dH24−C10 = 1.11626
dC11−H25 = 1.11510 dH25−C11 = 1.11510
dC12−H26 = 1.11510 dH26−C12 = 1.11510
dC13−H29 = 1.10203 dH27−C13 = 1.10977
dC14−H30 = 1.10203 dH28−C14 = 1.10977
dH29−C13 = 1.10203 dH30−C14 = 1.10203
dH31−C1 = 1.10203 dH32−C2 = 1.10203

Table 2.4: Atomic positions and bond lengths for the C14H18 graphane NR in Å units.
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x y z
C1 -0.71855 -1.23772 0.22103
C2 0.71855 -1.23772 -0.22103
C3 1.45643 0.00057 0.22934
C4 2.90092 0.00057 -0.22934
C5 -0.72667 1.25162 0.22313
C6 0.72667 1.25162 -0.22313
C7 1.45268 2.50459 0.22452
C8 2.90467 2.50459 -0.22452
C9 -0.72567 3.75646 0.22498
C10 0.72567 3.75646 -0.22498
C11 1.45268 5.00833 0.22452
C12 2.90467 5.00833 -0.22452
C13 -0.72667 6.26130 0.22313
C14 0.72667 6.26130 -0.22313
C15 1.45643 7.51235 0.22934
C16 2.90092 7.51235 -0.22934
C17 -0.71855 8.75065 0.22103
C18 0.71855 8.75065 -0.22103
H1 -0.76694 -1.28936 1.32863
H2 0.76694 -1.28936 -1.32863
H3 1.46270 0.00913 1.34444
H4 2.89466 0.00913 -1.34444
H5 -0.72800 1.24739 1.33942
H6 0.72800 1.24739 -1.33942
H7 1.45297 2.50518 1.34062
H8 2.90439 2.50518 -1.34062
H9 -0.72492 3.75646 1.34105
H10 0.72492 3.75646 -1.34105
H11 1.45297 5.00774 1.34062
H12 2.90439 5.00774 -1.34062
H13 -0.72800 6.26553 1.33942
H14 0.72800 6.26553 -1.33942
H15 1.46270 7.50379 1.34444
H16 2.89466 7.50379 -1.34444
H17 -0.76694 8.80228 1.32863
H18 0.76694 8.80228 -1.32863
H19 -1.22015 9.65798 -0.15230
H20 1.22015 9.65798 0.15230
H21 -1.22015 -2.14506 -0.15230
H22 1.22015 -2.14506 0.15230

dC1−H39 = 1.10192 dH19−C1 = 1.10985
dC2−H40 = 1.10192 dH20−C2 = 1.10985
dC3−H21 = 1.11515 dH21−C3 = 1.11515
dC4−H22 = 1.11515 dH22−C4 = 1.11515
dC5−H23 = 1.11630 dH23−C5 = 1.11630
dC6−H24 = 1.11630 dH24−C6 = 1.11630
dC7−H25 = 1.11611 dH25−C7 = 1.11611
dC8−H26 = 1.11611 dH26−C8 = 1.11611
dC9−H27 = 1.11607 dH27−C9 = 1.11607
dC10−H28 = 1.11607 dH28−C10 = 1.11607
dC11−H29 = 1.11611 dH29−C11 = 1.11611
dC12−H30 = 1.11611 dH30−C12 = 1.11611
dC13−H31 = 1.11630 dH31−C13 = 1.11630
dC14−H32 = 1.11630 dH32−C14 = 1.11630
dC15−H33 = 1.11515 dH33−C15 = 1.11515
dC16−H34 = 1.11515 dH34−C16 = 1.11515
dC17−H37 = 1.10192 dH35−C17 = 1.10985
dC18−H38 = 1.10192 dH36−C18 = 1.10985
dH37−C17 = 1.10192 dH38−C18 = 1.10192
dH39−C1 = 1.10192 dH40−C2 = 1.10192

Table 2.5: Atomic positions and bond lengths for the C18H22 graphane NR in Å units.



Chapter 3

Theory

The scientific community has been interested in the development of theoretical approx-

imations and also numerical methods to solve the quantum-mechanical problem of an

interacting system consisting of electrons and nuclei. En general, this is a many body

problem that can be solved with Density Functional Theory [22](Hohenberg1964). The

solution of real systems is so challenging and is possible with the use of numerical meth-

ods. In particular, the methodology to find solutions for crystals is well developed and

elaborated. Thus, in the present chapter, we just describe the main aspects of Den-

sity Functional Theory, which is used for the calculations. For further details, see, for

instance, Reference [23](Martin).

3.1 Hamiltonian

The hamiltonian of a quantum system composed of atoms is

Ĥ = − ~2

2me

∑
∇2

i +
∑
i,I

ZIe
2

|ri −RI |
+

1

2

∑
i 6=j

e2

|ri − rj|
− ~2

2MI

∑
I

∇2
I +

1

2

∑
I 6=J

ZIZJe
2

|RI −RJ |
,

= T̂e + V̂e−I + V̂e−e + T̂I + V̂I−I , (3.1)

23
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where each term on the right-hand side of the first line of equation (3.1) is denoted by T̂e,

V̂e−I , V̂e−e, T̂I and V̂I−I , respectively. T̂e is the kinetic energy of the electrons, V̂e−I is the

potential due to the electron-ion interaction or external potential, V̂e−e is the potential

due to the electron-electron interaction, T̂I is the kinetic energy of the ions and V̂I−I is

the potential due to the ion-ion interaction. ZI is the atomic number of the I-th ion, ri

is the position of the i-th electron, RI is the position of the I-th ion, me is the electron

mass and ~ is the Planck constant.

In order to have a less complex form of the hamiltonian, some approximations can

be done. Firstly, due to the considerable difference between the nucleous mass and

the electron mass, and the immediate response of the electrons under nuclei movement,

the kinetic energy of the nucleous can be considered as very small. In this manner,

the movement of nuclei can be treated adiabatically. This leads to a separation of the

nuclear and electronic coordinates in the wave function of the many body problem. This is

known as Born-Oppenheimer approximation. It allows to reduce the many body problem

to the problem of the dynamics of independent electrons. On the other hand, the ion-ion

potential is a constant and can be left out of the equation for the hamiltonian. Thus,

the hamiltonian reduces to three contributions.

Ĥ = T̂e + V̂e−I + V̂e−e. (3.2)

From now on, we change notation and write equation (3.3) in the form

Ĥ = T̂ + V̂ + V̂ext. (3.3)

where T = Te, V̂ = V̂e−e and V̂ext = V̂e−I .

3.2 Hohenberg-Kohn theorems

The Density Functional Theory was proposed by Hohenberg and Kohn in 1964 in their

study of an inhomogeneous electron gas [22](Hohenberg1964). The main ideas of the

theory can be summarized by the following two theorems.

Theorem 1: There is a one-to-one correspondence between the ground-state density

ρ(r) of a many-electron system and the external potential Vext [22](Hohenberg1964).
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Therefore so, the ground-state expectation value of any observable Ô is a unique

functional of the exact ground-state electron density:

〈Ψ | Ô | Ψ〉 = O[ρ]. (3.4)

In particular, the external potential Vext is a unique functional of ρ, apart from a

trivial additive constant. Since, Vext fixes Ĥ, the ground state is a unique functional

of the electron density ρ [22](Hohenberg1964).

The electron density is given by

ρ(r) =
N∑
i=1

φi(r)∗φi(r) (3.5)

where φi(r) are the electron wave functions in state i.

Theorem 2: Variational principle: If F [ρ(r)] were a known functional of ρ(r), the

ground-state energy and density in a given external potential is obtained by mini-

mization of the functional of the density ρ(r) [22](Hohenberg1964).

Being Ô the hamiltionian Ĥ, the ground-state of the total energy functional Ĥ[ρ(r)] ≡
E[ρ(r)] is:

E[ρ(r)] = T [ρ(r)] + EC [ρ(r)] + Eext[ρ(r)]

= FHK [ρ(r)] + Eext[ρ(r)] (3.6)

where

FHK [ρ(r)] = T [ρ(r)] + EC [ρ(r)] = 〈Ψ | T̂ + V̂ | Ψ〉 (3.7)

is the Honhenberg-Kohn density functional, which is universal for any many-electron

system; T [ρ(r)] is the cinetic energy functional, EC [ρ(r)] is the Coulomb energy

functional, and

Eext[ρ(r)] = 〈Ψ | V̂ext | Ψ〉 =

∫
Vext(r)ρ(r)dr (3.8)

is the external energy functional. The correct ρ(r) gives the ground-state energy

E[ρ(r)]. The minimal value of E[ρ(r)] is equal to the ground-state total energy as-

sociated to the external potential Vext and gives the correct ρ(r) if the the following

condition is satisfied

N [ρ(r)] =

∫
ρ(r)dr = N, (3.9)
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where N is the number of particles of the system.

There must exist more than one expression for the functional of the equation 3.7

for any many-electron system due to it does not depend on any nuclear variable,

that is, it contains information only of the electrons of the system. Hence, the

determination of the universal functional is a challenging task in many-electron

systems.

3.3 The Kohn-Sham equations

Kohn and Sham, in 1965, followed the theory of Hohenberg and Kohn to treat and

inhmogeneous systems of interacting particles [24](Kohn1965). They obtained self con-

sistent equations which include, in an approximate way, the exchange and correlations

energy terms, which arise due to the electron-electron interaction. On the one hand,

the exchange energy is the reduction in the energy of a system due to the antisymmetry

of the wave function under the exchange of any two electrons. The fact that the wave

function is antisymmetric produces a spatial separation between electrons with the same

spin, reducing the Coulomb energy of the system [25](Payne1992). On the other hand,

in the case where the electrons have opposite spins, they will be also a spatial separation

between electrons, and thus the coulomb energy is reduced below its Hartree-Fock value.

Such a reduction is called correlation energy [25](Payne1992). Considering both, the

exchange and the correlation effects, the exchange-correlation energy is given by:

Exc[ρ(r)] = EC [ρ(r)]− EH [ρ(r)], (3.10)

where EH [ρ(r)] is the Hartree energy. Hence, the total energy functional can be written

as:

E[ρ(r)] = T [ρ(r)] + EH [ρ(r)] + Exc[ρ(r)] + Eext[ρ(r)]. (3.11)

The energy functional depends on two external potentials. The first one is the external

interaction potential due to the presence of nuclei and the second one is that generated by

the exchange-correlation effects. These effects contain extra information of the electron-

electron interaction.
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The Kohn-Sham hamiltonian corresponding to the energy functional is:

ĤKS = T̂ + V̂H + V̂xc + V̂ext (3.12)

where

VH(r) =
e2

4πε0

∫
ρ(r

′
)

|r− r′|dr
′
, (3.13)

is the Hartree potential and Vxc is the exchange-correlation potential, which is given by:

Vxc(r) =
δExc[ρ]

δρ
. (3.14)

From the Kohn-Sham hamiltonian it is possible to obtain the exact ground-state

density by the mean of the Kohn-Sham theorem.

Kohn-Sham Theorem: For given electron wave function φi(r) and exchange-correlation

potential Vxc(r), the exact electron density ρ(r) of the N electron system can be

obtained by solving the Kohn-Sham equations

ĤKSφi = εiφi. (3.15)

where εi are the Kohn-Sham eigenvalues. The Kohn-Sham equations converts the prob-

lem of the interacting many-electron system to a problem of a system of noninteracting

electrons inside and efective potential. Here, there is a selfconsistent problem: the Hartree

potential Vxc and the exchange-correlation potential VH depend on the electron density

ρ(r), and the electron density depends on the electron wave function solutions that we

want to obtain. In this case, the density must be found self-consistently. Indeed, it must

be consistent with the Kohn-Sham hamiltonian. The self-consistent solutions of the

Kohn-Sham equations are those that minimize the Kohn-Sham total energy functional.

At the minimum value, it is equal to the ground-state energy of the system.

3.4 Numerical method to get total energy

The computational procedure for the calculation of the total energy of a system com-

posed of electrons and nuclei is that shown in Figure 3.1. Firstly, It is assumed and initial
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Input ρn−1(r)

Calculate VH y VXC

Solve ĤKSφi = ϵiφi

Calculate ρn from φi

Is the solution selfconsistent ?

Yes No

Calculate total energy

Figure 3.1: Procedure to calculate the total energy.

approximation to the electronic-charge density from which the Hartree and exchange-

correlation potentials are constructed. Secondly, the Kohn-Sham hamiltonian of Equa-

tion (3.15) must be built. In order to solve it, the wave functions φi can be expressed in

a given basis set φb
p in the form

φm =
∑
p=1

cmp φ
b
p. (3.16)

Hence, once equation (3.16) is substituted in the Kohn Sham equations (3.15), it is

possible to obtain the matrix eigenvalue equation [26](Cottenier2002).

 .. .. .. ..

.. 〈φb
i | Ĥsp | φb

j〉 − εm〈φb
i | φb

j〉 .. ..

.. .. .. ..


 cm1

.

cmp

 =

 0

.

0

 . (3.17)

The hamiltonian matrix for each point k is included in the calculation and once it is

diagonalized the Kohn-Sham eigenstates, the eigenvalues are obtained. Then, the new

charge density is calculated. The calculated eigenstates might generate different charge
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density than that used in the construction of the electronic potentials. If that is the case,

there is no a self-consistent solution. Thereupon, a new Kohn-Sham hamiltonian is built

with the used of the calculated density. The procedure is repeated until the solution is

self-consistent. Finally the total energy functional of equation (3.11) is calculated. Its

value will correspond to the ground-state energy of the system (See discussion in the end

of Section 3.3).
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Electronic properties

In this chapter, we present numerical calculations for the lattice constant and electronic

band structure for graphite, graphene, graphane and graphane nanoribbons (NRs). We

have used Density Functional Theory (DFT) within the Local Density Approximation.

The calculations have been obtained by using the ABINIT code [27] that is based on

pseudopotentials and plane waves. We focus in the convergence study of the lattice

constant and electronic band structure in the parameters of the calculation such as cut-

off energy, and number of k points nk
1. It is worth to address that a convergence study

allows to obtain the value of a parameter of the calculus that make the quantity under

study, here the lattice constant and energy bands, to tend to a definite limit value. For the

calculation, we have used the corresponding atomic structures described and calculated

in Chapter 2.

4.1 Parameters of the calculation

In the calculation of the lattice constant and bandstructure of for graphite, graphene,

graphane and graphane nanoribbons (NRs), we have considered the following consid-

erations. The used pseudotentials were the relativistic separable dual-space Gaussian

pseudopotentials of Hartwigsen-Goedecker-Hutter [28]. We considered 4 valence bands

for the carbon atom pseudpotential. Spin-orbit (SO) interaccion was not taken into ac-

1The cut-off energy defines the number of planes waves used for the wave function, and nk defines
the number of k points used to calculate the self-consistent ground state.
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Figure 4.1: The convergence study of the two higher valence and two lower conduction bands
in the cut-off energy ec (a), and in the number of k points nk (b).

count. The monolayer structure of graphane and the graphane NRs were modeled by

using a supercell approach. A vaccum lenght of at least 8.22 Å was considered.

4.2 Graphite

The bulk structure of Graphite was described in Section 2.3. Here, we have obtained the

electronic band structure for graphite. Firstly, we have done a convergence study of the

two higher valence and two lower conduction bands in the cut-off energy ec. Through

this process, we calculated the energy bands for various values of ec. We came to the

conclusion that the corresponding valence and conduction bands for graphite with cut-off

energies of 50 and 60 eV, respectively, overlap as it is shown in Figure 4.1(a). Therefore,

we used ec = 50 eV for the calculation of the band structure and for the convergence

study in the number of k points. For that, we took nk = 8, 12, and 16. It can be seen in

Figure 4.1(b) that the corresponding energy bands are overlapped. Consequently, in the

following, the band structure calculations of this material are done with 8 k points.

We show in Figure 4.2, the converged band structure without spin orbit (SO) inter-

action of graphite along the path that join the high symmetry k points K, Γ, M, K, H,

and A. This material is classified as a metal or semimetal, due to the fact that at K and

along the path K-H the maximum valence band values equal to the minimum conduction

band values. In other words, graphite does not have an energy band gap. In Figure 4.2,
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Figure 4.2: Band structure of graphite. The blue lines are valence bands and the purple lines
are the conduction bands.

it can be seen that there are eight valence bands that are shown in blue. The minimum

of the first valence band is found at the Γ point and the maximum of the heighest valence

band is at the K point.

4.3 Graphene

The monolayer structure of graphene was described in Section 2.4. In order to see how its

lattice constant was obtained, we executed a convergence study in the cut-off energy and

the number of k points. Firstly, we took cut-off energy values of 140 and 160 eV. In Fig

4.3(a), we can observe that the lowest total energy value is 2.443 Å . Therefore, we used

140 eV for the cut-off energy parameter to determine the convergence study in the numer

of k points. On the other hand, we took different number of k points for the ground state

calculation, nk = 8, 12, 16, 20, and 24 We note that, although all corresponding curves

changes in magnitude, the lowest value for all the curves keeps the same vaue of 2.443

Å . Thus it is just enough to consider in the calculation nk = 8.

We have also performed a convergence study of the energy bands for graphene just

as in the case of graphite. Thus, in Figure 4.4, we show the converged band structure

without spin orbit (SO) interaction of graphene along high symmetry wave vector points.

We can see that the graphene is a semimetal material just as graphite is. At the K and H
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Figure 4.3: Convergence study of the lattice constant of graphene of the two higher valence
and two lower conduction bands in the cut-off energy ec (a), and in the number of k points nk.

high symmetry points, the maximum valence band joins the minimum conduction band.

You can distinguish that graphene has four valence bands that are shown by the blue

lines. The minimum of the first valence band is found at Γ and the maximum of the

heighest valence band is at the K point.

4.4 Graphane

We have already described the atomic structure of graphane in Section 2.5. Perform-

ing total energy minimization, we have obtained its atomic structure. We calculated

an interatomic bonding of dCC =1.513 Å , dCH =1.116 Å and the lattice constant is

equal to 2.505 Å. Our results are comparable with those calculations reported by Sahin

[19](Ataca2010), who obtained the following values: dCC =1.52 Å , dCH =1.12 Å and

2.516 Å for the lattice constant.

Here, in Figure 4.5(a), the graphane band structure is shown along the high symmetry

points indicated by K, Γ, M, K, H and A. This material is classified as a semiconductor

due to it has an energy band gap, which is direct and has the value of 3.391 eV. We

can observe from the Figure that there are five valence bands. The minimum of the first

valence band is found at Γ, and the maximum of the heighest valence band is also at

the Γ point. The minimum of the first conduction band is found at the Γ point. The

two top valence bands at around Γ are very sensitive to small changes of the positions of
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Figure 4.4: The band structure of the graphene where the blue lines are valence bands and
the purple lines are conduction bands.

the atoms. We show this in Figure 4.5(b). Here, the band structure correspond to the

relaxed bandstructure where the atom postions were shifted slightly along the x direction

by small amount of 0.00599 Å . Comparing both bandstructures of Figure 4.5, we can

observe that, at Γ, the two top valence bands do not overlap for the case were the atoms

positions were shifted from those of the relaxed structure. In contrast, the two top valence

bands do overlap in the banstructure corresponding to the relaxed structure. Besides, the

the band gap energy has the value of 3.07 eV for the graphane structure were the atoms

were shifted. Such differences are reflected in the linear optical response spectrum (see

Section 5.2). This suggest that a well converged atomic structure is requiered in order to

obtain the correct bandstructure. The band structure of graphane seen in Figure 4.5(a)

is comparable to others already reported [15, 20, 13](Sofo2007,Yang2012,Sahhin2015).

4.5 Graphane nanoribbons

We have also relaxation of the atoms and calculation of the the electronic band structure

of armchair graphane NRs: C6H10, C10H14, C14H18, C18H22. Their corresponding unit

cell structures were described in Section 2.6. The relaxation of the structure results in

the values of the lattice constant and width of the studied NRs tabulated in Table 4.1

The respective band structures for the studied graphane NRs along high symmetry points

indicated by Γ and M are shown in Figure 4.6. There are 17, 27, 37, and 47 valence bands
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Figure 4.5: Band structure of graphane, where the blue lines are valence bands and the purple
lines are conduction bands. In (a) the band structure correspond to the relaxed graphane
structure, and in b) it is obtained by shifting the atomic positions of the relaxed graphane
structure along the x direction by a small amount of 0.00599 Å.

in the bandstructures of the C6H10, C10H14, C14H18, C18H22 graphane NRs, respectively.

In all the band structures, the minimum of the first valence band is found at Γ, the

maximum of the heighest valence band is also at the Γ point, and the minimum of the

first conduction band is found at the Γ point. The studied graphane NRs are classified as

semiconductors since they have a direct energy band gap whose values are 5.391, 4.605,

4.200 and 3.961 eV for the C6H10, C10H14, C14H18, C18H22 graphane NRs, respectively

(see Table 4.1). We can also see from Figure 4.6, that all bandstructures of the studied

graphane NRs mainly contain planar bands indicating that there is small dispersion.

Besides, we note that there are a high density of band states in a small interval range of

energy both below and above the energy band gap.

In Figure 4.7, we plot the energy band gap as a function of the width of the studied

Graphane Lattice Width Band gap
NRs constant energy

(Å ) (Å ) (eV)

C6H10 4.4115 2.465 5.391
C10H14 4.3752 4.975 4.605
C14H18 4.3632 7.482 4.200
C18H22 4.3573 9.988 3.961

Table 4.1: Lattice constant, width and band gap energy of the studied NRs.
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armchair graphane NRs. We also compare our LDA calculations shown in red with those

GGA results done by Yang et al. [20](Yang2012) shown in blue. The data are join with

lines in order to see the behavior of the energy band gap. We can see from the figure that

the band gap energy decreases as the width of the NR increases. It takes values from

5.391 eV for C6H10 graphane NR and decreases to the value of 3.961 eV for the C18H22

graphane NR.
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Figure 4.6: Band structures of the studied armchair graphane NRs: C6H10, C10H14, C14H18,
and C18H22.
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Chapter 5

Optical response

In this chapter, we present numerical calculations for the linear optical response of

graphane and the studied graphane nanoribbons (NRs). Graphane nanoribbons exhibit

important number of properties and hence constitute basic structures to fabricate vari-

ous devices. The different NRs are wide band-gap semiconductor when their edges are

passivated with hydrogen [19](Ataca2010). The studied graphane NRs are described in

Section 2.6.

5.1 Method

Firstly, both graphane and graphane NRs structures were modeled by using a supercell

approach. A vaccum lenght of at least 8.23 Å was considered. We have used Density

Functional Theory (DFT) within the Local Density Approximation. The calculations

have been obtained by using the ABINIT code [27](abinit) for obtaining wavefunctions

and eigenenergies, with the use of pseupotentials and planewaves. The ion-core poten-

tial was replaced by the relativistic separable dual-space Gaussian pseudopotentials of

Hartwigsen-Goedecker-Hutter [28](Hartwigsen1998). We considered 4 valence bands

for the carbon atom pseudopotential. Spin-orbit (SO) interaccion was not taken into

account. We have taken a cut-off energy of 60 Ha for the plane wave expansion of the

wave functions and used 8 k points for the ground state calculation. For the optics

calculation, the linear tetrahedra method was used where 300 k point were used in the

irreducible Brillouin zone. The number of bands considered in the calculation was 200.
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Figure 5.1: Real (a) and imaginary (b) parts of of the dielectric function for graphane.

Our calculation has the characteristic of being a full-band structure calculation, that is

it takes into account the contributions to the spectrum of k points in the whole Brillouin

zone.

5.2 Graphane

The spectra of the real and imaginary parts of the dielectric function for graphane are

shown in Figure 5.1. We observe that the spectra shows isotropy on the plane of the

monolayer, but it shows anisotropy in the responses pararell (xx, or yy) and perpendicular

(zz) to the plane of atomic structure. We also observe from Figure 5.1(b) that the

absorption spectra starts having appreciable values well above the band gap value of

3.391 eV. When the spectrum has zero values at some frequency there is no absorption

because the photon energy is within the energy band gap or the material is transparent to

that frequencies. In particular, the imaginary part of the dielectric function component

εzz exhibits two main absorption peaks, which are at 6.20 eV and 13.19 eV, respectively.

While for εxx and εyy it exhibits a peak which is at 11.41 eV.

Small deviations of the atom positions might result in the loss of the structural sym-

metry of the crystal. This is shown in Figure 5.2, where the imaginary parts of the

dielectric function for parallel (xx and yy) and perpendicular (zz) light polarizations are

plotted for the relaxed graphane structure having their atom positions shifted along the x

direction by 0.00599 Å. Here, we see that the corresponding spectra of εxx and εxy do not
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Figure 5.2: The imaginary portion, ε2, of the dielectric function for graphane.

overlap, which mean that the optical response turns to be anisotropic on the plane of the

graphane structure. This, Indeed, is not correct for an hexagonal layered system, which

must be isotropic as it is shown in Figure 5.1(b). The corresponding band structures

of relaxed graphane structure and of the relaxed graphane with shifted atom positions

are shown in Figure 4.5. The most visible difference between both bandstructures is

seen in the two top valence bands at around Γ. Such a difference is not reflected in the

optical spectrum since the optical transitions that must contribute to the spectrum are

just above the band gap energy. Very slight differences might be present in the energy

bands, which, in turn, are reflected in the optical spectrum.

5.3 Armchair graphane nanoribbons

In this section, we show results for the optical response of the studied armchair graphane

NRs. Firstly, we analyze the reliability of the calculations for high frequencies in terms of

the transitions that contribute to the spectrum. In other words the number of bands in

the calculation plays a main role in the spectrum for high frequencies. We see in Figure

5.3, spectra for the imaginary part of the dielectric function as a function of the number

of bands that are taken in the DFT calculation. We can observe the great difference

between spectra with number of bands of nb = 50 and nb = 200 for photon energies
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above 10 eV. Indeed, as long as we take more states in the calculation more high-energy

transitions contribute to the spectrum.

We show in Figure 5.4 converged spectra for the imaginary part ε2 of the dielectric

function for C6H10, C10H14, C14H18 and C18H22 NRs. We see in all spectra, that they

start having appreciable values different from zero above 5 eV. In the case of the C6H10

graphane NR (Figure 5.4(a)). The spectrum for εzz2 component exhibits two main peaks at

6.33 eV and 12.93 eV, respectively. While for εyy2 has a peak at 11.29 eV and εxx2 presents a

peak at 11.99 eV. In Figure 5.4(b), we see corresponding results for the C10H14 graphane

NR. The spectrum for the εzz2 component exhibits two main peaks, at 6.31 eV and 12.67

eV, respectively. While εyy2 has a peak at 11.87 eV and εxx2 presents two main peaks at

11.99 eV and 12.21 eV. We can see in Figure 5.4(c) the respective optical response of the

C14H18 graphane NR. The spectrum for εzz2 component exhibits three main peaks at 6.30,

6.78, and 13.18 eV, respectively. While εyy2 show a peak at 13.16 eV and εxx2 has a peak

at 12.38 eV. The optical response for the C18H22 graphane NR is shown in 5.4(d). We se

that the spectrum for εzz2 exhibits two main peaks at 6.25 eV and 13.06 eV, respectively.

εyy2 has a peak at 12.14 eV and εxx2 presents a peak at 12.38 eV.

We also see from Figure 5.4 that the optical response of the armchair graphane NRs is

anisotropic in the three spatial directions. This is the expected behavior due to symmetry

reasons. The NRs are structurally different in the three spatial directions. The NR

structure is infinite and periodical in the x direccion, and it is finite with different widths

in the y and z directions.

In Figure 5.5, we show spectra for the three components different from zero of the

imaginary part of the dielectric function εxx2 , εyy2 and εzz2 as a function of the NR struc-

ture. We see the general tendency that as the width of the NR increases, the respective

spectrum of the NR approaches that of graphane. Indeed, this is the expected behavior

of the optical response.



44 Chapter 5. Optical response

xx
yy
zz

C6H10

Energy (eV)

ε 2

20151050

0.75

0.5

0.25

0

xx
yy
zz

C10H14

Energy (eV)
ε 2

20151050

0.9

0.6

0.3

0

(a) (b)

xx
yy
zz

C14H18

Energy (eV)

ε 2

20151050

0.9

0.6

0.3

0

xx
yy
zz

C18H22

Energy (eV)

ε 2

20151050

0.9

0.6

0.3

0

(c) (d)

Figure 5.4: Spectra of the imaginary part ε2 of the dielectric function for the studied graphane
NRs.
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Conclusions

We have perfomed a theoretical study of the electronic properties and optical response

of graphane and the following armchair graphane nanoribbons (NRs): C6H10, C10H14,

C14H18 and C18H22. Firstly, in order to form the atomic arrangement of the studied

structures, the primitive and reciprocal vectors of an hexagonal lattice were obtained.

Then we perfomed a full relaxation of the structures and obtained the corresponding

lattice constant for graphene, graphane and graphane NRs. The lattice constant for

C6H10, C10H14, C14H18 and C18H22 NRs are 4.4115, 4.3752, 17.5279 and 20.0344 Å ,

respectively. Then, the corresponding electronic band structures, as well as the optical

responses were calculated for graphane and the studied graphane NRs. An important

step in our study was the convergence study, which was also performed for the energy

bands.

We have found that, graphane and the graphane NRs are semiconductor materials, in

contrast to graphite and graphene which are conductor materials. The band gap energy

of armchair graphane NRs decreases as the width of the NR increases. The band gap

energies are 5.391 eV for the C6H10 NR, 4.605 eV for the C10H14 NR, 4.200 eV for the

C14H18 NR and 3.961 eV for C18H22 NR.

We found that the lineshape of the spectrum of the imaginary part of the dielectric

function of graphane NRs is similar to that of graphane. However, it shows an overall

decreasing of its magnitude in the whole range of frequencies as the NR width reduces.

The imaginary part of the dielectric function for εzz of the C14H18 NR have their largest

peaks at 6.30 eV, 6.78 eV and 13.18 eV. While εyy exhibits a peak which is at 13.16 eV.
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With regard to the εxx component both structures C18H22 and C14H18 present a largest

peak at around of 12.38 eV. Finally, we confirm our hypothesis stated that the optical

response of graphane nanostructures in the form of NRs is anisotropic.
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Appendix A

Abbreviations and variables

BZ Brillouin zone

dCC Carbon-carbon bond length

dCH Carbon-hydrogen bond length

DFT Density Functional Theory

e Electrons

ec Cut-off energy

FHK [ρ] Honhenberg-Kohn density functional

Ĥ Hamiltionian

ĤKS Kohn-Sham hamiltonian

I Nuclei or ions

nb Number of bands

nk Number of k-points

LDA Local Density Approximation

NRs Nanoribbons

Ô Observable

φi Eigenfunctions from the perturbed system

ρ(r) Ground-state density

ri Position of the i-th electron

T̂ Kinetic energy of the electron gas

T Exact kinetic energy functional

T0 Kinetic energy functional of a non-interacting electron gas

T̂e Kinetic energy of the electrons

T̂I Kinetic energy of the ions

V Electron-electron potential energy functional

V̂e−e Potential due to the electron-electron interaction
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V̂e−I Potential due to the electron-ion interaction

V̂I−I Potential due to the ion-ion interaction

Vext External potential

Vxc(r) Exchange-correlation potential

ZI Atomic number of the i-th electron

1D One dimensional

2D Two dimensional

3D Three dimensional
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