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Abstract

The purpose of this thesis is to investigate, by means of numerical simulations,

soliton pulse compression and soliton self-frequency shift. Those physical phenom-

ena are related to higher-order solitons propagation. This study in particular was

performed in hollow-core photonic bangap fibers, and involves both designing and

characterizing the fibers by means of their spatial parameters. A second stage con-

sists in the study of soliton pulse propagation along the fiber and, as a consequence,

the analysis of the desired phenomena. In particular, this work focus in the quality

of the output pulse.

Firstly a brief introduction of hollow-core photonic bandgap fibers and theirs

applications are shown: particularly soliton pulse compression and soliton self-

frequency shift. Later a numerical investigation on the influence of tapering the

fiber on its dispersion parameters, effective areas and non linear parameters are pre-

sented. Then the theoretical fundamentals for the study of soliton pulse propagation

are given, as well as the mathematical expressions to quantify it.

Finally the soliton evolution is studied by solving the generalized Schrödinger

equation. On the one hand, a numerical study of the compression of femtosecond

unchirped pulses, at 800 nm is presented. Here the effects of tuning the cross section

size of a HC-PBGF on the modal parameters in order to have a fiber structure which

promotes pulse compression is studied. It was found that a tuning of the cross section

vii



size of the fiber with a tapering factor of 4.5% produces a maximum compressed

pulse with a compression factor of 5.7 with a temporal FWHM of 153.8 fs. The

pulse reaches a peak power of 1.5851 MW with 77% of pulse shape quality. The

length fiber at which the compressed pulse is reached is of 31 cm.

On the other hand, a numerical investigation of low-order soliton evolution at

1060 nm is presented. In the numerical simulation, the pulse quality evolution in

soliton pulse compression and soliton self-frequency shift in three fiber structures

with different cross-section sizes are investigated. The results showed that the seven-

cell HC-PBGFs, with a cross section size reduction of 2%, presents larger anomalous

values of the second-order dispersion and greater values of the non linear parameter.

If an input soliton pulse with order of N = 3 (which corresponds to an energy of

1.69 µJ ) propagates a distance of 12 cm, it gets compressed with a compression

factor of 5.6 and quality factor of 0.73. Meanwhile, after the input soliton pulse

propagates 6 m, its central wavelength redshifts to a shift value of ∆λ = 28 nm and

presents a quality factor of ≈ 0.8.
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1 Introduction

The main subject of the present thesis is to investigate, by means of numerical

simulations, the following non linear phenomena: soliton pulse compression (SPC)

and soliton self-frequency shift (SSFS) for hollow-core photonic bandgap fibers (HC-

PBGFs). Such non linear optical phenomena have several applications on the tem-

poral compression and the displacement of the central wavelength of an initial soli-

ton pulse. HC-PBGFs were choosen as the non linear media due to their special

characteristics of waveguiding and non linear properties [1].

1.1 HC-PBGFs and their applications

The HC-PBGF was first proposed by Russel in 1991 [2], theoretically demostrated

by Birks in 1995 [3], and then experimentally proved by Cregan et al. in 1999 [4] (see

Figure 1.1). Such a fiber had a triangular lattice of air holes in a silica background

and the hollow core was formed by removing seven capillaries. The HC-PBGFs are

characterized by a core with a lower refractive index compared with that of the

cladding. Thus total internal reflection cannot occur, instead the light is guided

and confined in the core, through Bragg reflection, by the surrounding photonic

structure that is formed by a two-dimensional periodic array of air holes.

1



2 Chapter 1. Introduction

Figure 1.1: First hollow-core photonic bandgap fiber made by Cregan and his
group [4].

It has been more than a decade since the first desing of HC-PBGF was made,

and in all recent years, there has been a great progress in design, material and

guidance capabilities of these kind of fibers [5, 6, 7, 8, 9]. For example, HC-PBGFs

with triangular, square, and kagome lattices are now possible to fabricate. The

scientific community is making great efforts in order to achieve hollow fibers with

larger transmission bands, with low losses and better guiding features by probing

novel geometry desings of both the core and the surrounding structure, and as

well as the material that forms the fiber. Simultaneously, they are also looking

for potential applications which include: optical gyroscopes, industrial applications,

sensing, high-power pulse transmision, gas cell, pulse compression, etc. Among

the advantages of HC-PBGFs based optical gyroscopes over solid core fibers are:

low non linearities, pure silica material, no Fresnel reflections, polarization main-

taining desing and low bend sensitivity [10, 11]. HC-PBGFs have also been used

to deliver high-power CO2 laser beams for industrial applications such as cutting,

welding, and marking. By using HC-PBGFs, researchers overcome the problem of
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utilizing a bulky system to bring high-power beams from the source to the work-

ing area [12, 13, 14, 15]. Sensing is another field in which HC-PBGFs have found a

niche. The motivation is thay they can offer better features than solid-core fibers.

Applications of interest include environmental sensing, process monitoring, biosens-

ing, gas sensing, etc [16, 17, 18, 19, 20, 21, 22, 23]. Besides, HC-PBGFs have been

designed for the transmission of high-peak-power ultra-short laser pulses [24, 25]

and present themselves as an attractive option for laser dentistry and biomedical

applications [26, 27, 28]. Another interesting feature of HC-PBGFs is their capac-

ity for being used as gas cells [29, 30, 31]. Some novel results have already been

demonstrated in areas such as non linear optics [32, 33, 34, 35, 36, 37, 38], quantum

optics [39, 40] laser-induced guidance [41], etc.

1.2 SPC and SSFS

Two non linear phenomena that might take place during the propagation of pulses

in optical fibers, and that are the subject of this thesis, are soliton pulse compression

(SPC) and soliton self-frequency shift (SSFS). These phenomena are in continuous

investigation by the scientific community [42,43,44,45], and have an important role

in the search of new technologies of light sources and applications based almost

entirely on HC-PBGFs. Several research groups have made important advances

both experimentally and theoretically in the understanding of soliton compression

and soliton formation as well as its dynamics in HC-PBGFs [33,46,47]. Recently, in

the study of SPC, Ouzounov et al. successfully compressed a 120 fs input pulse into

50 fs pulse by using a 24 cm Xe-filled HC-PBGF [43]. Gérôme et al. also reported

the existence of soliton compression. They achieved output pulses of 90 fs from

195 fs input pulses by using 8 m of tapered fiber [44, 48]. Lægsgaard and Roberts

studied numerically the soliton formation during the compression of chirped gaussian
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pulses in HC-PBGFs. They concluded that third-order dispersion (TOD) is a crucial

parameter that prevents the formation of shorter soliton pulses [49, 50]. Welch and

collaborators demonstrated a temporal compression factor of 12, in a seven-cell

hollow-core tapered fiber with a length of 35 m, for picosecond input pulses [51].

Meng et al. [45] numerically studied the soliton formation during the compression of

unchirped femtosecond pulses in HC-PBGFs by using the Gorbach-Skryabin model

[52]. They concluded that the combined effects of intrapulse stimulated Raman

scattering and negative TOD can form shorter pulses than those formed by only

considering intrapulse stimulated Raman scattering. Heckl et al. using a xenon gas-

filled Kagome-type HC-PCF achieved a maximum compression factor of 4.3 and an

efficiency of above 70% [53].

On the other hand, SSFS and their applications have also been studied [54,55].

Ouzounov et al., for instance, reported a SSFS from 1470 nm to 1530 nm [33]. Mak-

ing use of such phenomenon, Gérôme reported a high-power tunable femtosecond

soliton source of 33 nm wavelength tunability [56]. Gorbach and Skryabin studied

the dynamics that accompany the soliton propagation in the femtosecond regime in

HC-PBGFs. Their model included non linear responses of both the silica, in the

cladding, and of the air. They concluded that the strong Raman response of air

does not always result in a large SSFS in HC-PBGFs [52].

1.3 Scope of the thesis

In the present thesis, soliton propagation in HC-PBGFs is studied. In particular,

two non linear optical phenomena namely SPC and SSFS. Although SPC and SSFS

have been studied by other authors, those studies lack of an analysis of the quality of

the output pulse. Hence, in this work those phenomena are investigated under the
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influence of variations of the characteristics of the fiber and the input soliton pulse.

A conjoint analysis of the pulse shape quality in both phenomena, SPC and SSFS,

is performed. According tho the author’s best knowledge, this kind of analysis was

first reported in [57], and here it is presented as the main scope of the thesis.

The outline of the thesis is as follows: chapter 2 presents a numerical investiga-

tion of the influence of tapering the cross section size of a seven-cell HC-PBGF on

the dispersion, effective area and non linear parameters. Furthermore, this chap-

ter presents some distinctive features that can help the reader to understand the

main features of such kind of fibers. Although there are several geometries of HC-

PBGFs, the simulated fiber, in this chapter, represents the most basic geometry:

its cladding is formed by circular air-holes embedded in a triangular lattice of silica

that surround the air-core. A detailed description of how to design or modelate

HC-PBGFs is not the objective of this thesis. For a more comprehensive study of

how to do so, the reader is refered to [58]. Therefore, the simulation only shows the

behaviour of fundamental guided modes, which were used to find the refractive index

of the air-guided modes. The Comsol Multiphysics, a powerfull commercial simula-

tion software was used to find such air-guided fundamental modes∗. This package

was adapted to modelate HC-PBGFs. Once the refractive index was computed, a

home-made Matlab code was used to find the dispersion and non linear parameters.

The pulse propagation theory is then presented in Chapter 3. The generalized non

linear Schrödinger equation (GNLSE) is used as a foundation to explain the soli-

ton pulse propagation along the fiber. Definitions of the used mathematical model

and the quantitative parameters as well as a brief explanation of the physical phe-

nomena that involved the SPC and SSFS are given. Afterwards chapter 4 contains

two numerical investigations of soliton propagation in HC-PBGFs. The first one

∗I want to thank Dr. Albert Ferrando, from the Universidad de Valencia, for giving me the

opportunity to work in his group and for letting me use COMSOL Multiphysics.
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analyzes the enhancement of both the compression factor and the pulse shape qual-

ity of femtosecond pulses at the wavelength of 800 nm by tuning the cross section

size of the fiber. The second one comprises a numerical study of low-order soliton

evolution in a proposed seven-cell HC-PBGF. The numerical simulation analyzes

the pulse quality evolution in soliton pulse compression and soliton self-frequency

shift in three fiber structures with different cross section sizes at the wavelength of

1060 nm. In both works the Comsol Multiphysics software was used to model the

HC-PBGF structures and the GNLSE was solved by using the symmetric split-step

Fourier method. Finally, conclusions of the thesis are exposed in Chapter 5.



2 Modeling a HC-PBGF

A numerical study of the effects of tapering a hollow-core photonic bandgap fiber

(HC-PBGF) on parameters such as effective area, non linear parameter and dis-

persion parameter is presented. The taper on the fiber is modeled by scaling the

cross section of the original fiber geometry. Both the air and the silica contribu-

tions to the effective area and the non linear parameter are studied. Afterwards

the fundamental guided mode and its respective effective refractive index for the

HC-PBGFs are found. Once the effective refractive index of the mode is obtained,

their corresponding dispersion and non linear parameters are computed. Since, a

detailed description of how to design or modelate HC-PBGFs is not the objective

of this thesis the simulation only shows the behavior of fundamental guided modes,

which were used to find the refractive index of the air-guided modes. The Com-

sol Multiphysics, a powerfull commercial simulation software was used to find such

air-guided fundamental modes. This package was adapted to modelate HC-PBGFs.

2.1 Introduction

The development of hollow-core photonic bandgap fibers meant a milestone in the

study of non linear optical phenomena thanks to the special way in which light is

guided: these allow us to confine light in a core of air, whose refractive index is lower

7



8 Chapter 2. Modeling a HC-PBGF

than that of the cladding [59,60,61]. In the case of air-filled HC-PCF, the effective

nonlinearity is reduced by as much as three orders of magnitude when compared

with solid-core fibers. But because the overall dispersion is generally anomalous

over most of the transmission profile, guidance of high-peak-power pulses by means

of non linear soliton effects is nonetheless possible [62].

Thus HC-PBGFs are an ideal medium for the delivery of light pulses of high

intensity [43, 48]. Figure 2.1(a) shows the cross section of the HC-PBGF that is

studied in this section. Basically, the fiber is made by an unique material (silica);

the cladding is formed by air holes periodically located in a triangular arrangement,

which extend along the length of the fiber, and surround the air core. The parameter

d and the pitch, Λ, define the diameter of the air holes and the distance between

consecutive holes, respectively. Another important parameter is D which represents

the relative hole size that is defined by the ratio D = d/Λ. This parameter gives

information about the quantity of silica that the fiber contains; a value of D ≥ 0.95

indicates that the quantity of silica contained on the fiber is quite small.

Tapering conventional optical fibers is a well studied issue, both experimentally

and theoretically. Thinning an optical fiber induces radical changes on the modal

properties of the fiber [63]. HC-PBGFs already presents distinctive characteristics

depending on both the geometry and the size of its structure (d and Λ). Thus

the values of parameters such as the effective modal area (Aeff ), the dispersion

parameter (D) [64], and the non linear parameter (γ) will change if the geometry

and size of the fiber are changed. One way to incorporate an additional degree of

freedom on the waveguiding properties of the fiber is to consider the tapering of the

fiber [51]. Although the core of the fiber is made of air, the non linear parameter of

the HC-PBGFs does not only arise from the contribution of the air, but also from

the contribution of the silica. This is because part of the guided mode overlaps with
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regions made of silica [65, 66]. Since the non linear refractive index of the silica

is three orders of magnitude greater [67] than that of the air, it is interesting and

important to compare both contributions to the non linear parameter.

(a) (b)

Figure 2.1: (a) Cross section of the studied HC-PBGF. Λ and d represent the
pitch and the diameter of the air hole, respectively. The colored region represents
silica and the white region represents air. (b) Fundamental guided mode of the fiber
shown in (a).

A remarkable characteristic of the HC-PBGFs is that the guided modes are

only permitted for a range of wavelengths, which is directly related to the size of the

bandgap of the cladding of the fiber (only light with wavelengths within the photonic

bandgap of the cladding can be guided in the core). In other words, the transmission

band width, the range of wavelengths of the light than can be guided along the core,

is ruled by the size and geometry of the cladding of fiber [68]. Figure 2.1(b) shows

a fundamental guided mode for the HC-PBGF that is depicted in Figure 2.1(a).

Among the non linear optical phenomena that can be studied in HC-PBGFs are

the formation and dynamics of solitons along the fiber such as pulse compression and
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self-frequency shift [49,45]. The first step to evaluate such phenomena is to find the

values of the spatial modal parameters of the fiber. The investigation considers that

the fiber preserves its original form and geometry and only experiences a uniform

decrease of its dimensions. It should be noticed that the tapering factor is not a

function of the fiber length. Therefore the spatial parameters are not related to the

length of the tapered fiber, but only with the cross secion size of the fiber.

2.2 Methodology

In order to find the effective refractive index of fundamental modes in a tapered

HC-PBGF, the comercial software Comsol Multyphysics c© is used. Furthermore

the spatial parameters are also found: the modal effective area (for air and silica),

the non linear parameter (for air and silica) and the dispersion parameter. The

parameters of the untapered fiber structure are: d = 1.9 µm, Λ = 2 µm and

D = 0.95. The tapered fiber is modeled by scaling the cross section of the original

(untapered) structure of the HC-PBGF. Since the values of d and Λ are scaled by

the same factor, the value of D is kept fixed. In this work, four sizes of the HC-

PBGF are used. Those correspond to a fiber tapering factors of 0, 10, 20 and 30%

of its original structure. Table 2.1 shows the particular values of d and Λ for each

of these cases. The core of the fiber is composed by an air hole with a radius of

r = 1.4(Λ) = 2.8 µm. The core of the fiber cuts six holes of the inner ring of the

cladding as it is shown in Figure 2.1(a). The core’s form of the HC-PBGF was

chosen in such a way that it avoids surface modes [61].

The dispersion parameter takes into account the material dispersion and the

waveguide dispersion, and it can be calculated by performing the second derivative

of the effective index of a guided mode, neff , with respect to the wavelength, λ,
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Table 2.1: Hole diameter, d, and pitch, Λ, values of the studied HC-PBGFs.
D = d/Λ is kept fixed with the value of D = 0.95.

Tapering factor (%) d (µm) Λ (µm)

0 1.9 2.0

10 1.71 1.8

20 1.52 1.6

30 1.33 1.4

as [69]:

D(λ) =

(

λ

c

)

(

d2neff

dλ2

)

, (2.1)

where c is the velocity of light. We have calculated the effective area of fundamental

guided modes for a HC-PBGF through the definition given by: [70]

Ai
eff =

(
∫+∞

−∞

∫+∞

−∞ | E |2 dxdy)2
∫+∞

−∞

∫+∞

−∞ | Ei |4 dxdy
, i = a, s (2.2)

where i = a, s refers to air and silica, respectively; E is the electric field and thus Ei

is the electric field either in the silica region or the air region. The above definition

for Aeff is valid for low contrast fibers. This means that the effective refractive index

of the fundamental guided mode must be approximately equal to the refractive index

of the core, ncore, i.e., neff ≈ ncore. Both contributions are shown, that of air and

of silica, in order to see their contributions to the total non linear parameter, which

is given by [67]:

γT = γa + γs, (2.3)

with

γi =
2πni

2

λAi
eff

, (2.4)

where ni
2 represents the non linear coefficient of the silica (i = s) or the air (i = a),

and the Ai
eff is the effective area defined by Equation 2.2. The following values for
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Figure 2.2: Computed effective refractive index of the fundamental guided modes
as a function of wavelength, and fiber tapering factor.

the non linear coefficients are used: na
2 = 2.9 × 10−23 m2/W and ns

2 = 2.6 × 10−20

m2/W [67]. All calculations for Aeff and γT performed correspond to fundamental

guided modes.

2.3 Numerical results

2.3.1 Effective refractive index

The computed effective refractive index of the fundamental air-guided modes for

the four HC-PBGFs as a function of the wavelength can be seen in Figure 2.2. For

the original structure (with fiber tapering factor of 0 %), it can be observed that

fundamental modes were found within the wavelength range of 1065 to 1240 nm.

As long as the cross secion of the fiber gets reduced, the fundamental modes are

found at lower wavelengths. For instance, for that fiber with a tapering of 30%,

those modes are located within the wavelength range from 745 to 865 nm. Another
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feature that is present in effective index curves of Figure 2.2 is their similar behavior,

that can be understood by the symmetrically reduction of the cross secion size of

the HC-PBGF.

These features play an important role since they give information about the

needed tapering factor of the fiber in order to obtain air-guided modes within a

given wavelength range.

2.3.2 Effective area and non linear parameter

Figure 2.3 shows the effective areas, for air and silica, of the fundamental guided

mode of the HC-PBGF shown in Figure 2.1 for different values of fiber tapering

factors. Since the core is made of air, let’s mainly focus in its contribution. There

are interesting features that we can address due to the tapering of the fiber: firstly,

the transmission bandwidth of the untapered fiber is of around 175 nm. This value

decreases as the tapering factor increases. This feature is clearly seen by observing

that the transmission width is of around 120 nm for a tapering factor of 30%. The

second feature is that the transmission band shifts to lower wavelengths as the

tapering factor increases. From Figure 2.3(a), it can be seen that the transmission

band is centered at around 1150 nm for the untapered fiber, and at around 800 nm

for the fiber with a tapering factor of 30%. The third issue is a direct consequence

of the thinning: if the diameter of the fiber’s core decreases then the area in which

the fundamental mode is confined also decreases and, therefore, its corresponding

effective area decreases as well. The effective areas for both the air and the silica of

the fundamental mode for an untapered fiber are nearly 2 times greater than those

of the fiber with a tapering factor of 30%, at the wavelength of maximum effective

area.
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Figure 2.3: Effective areas for air (a) and silica (b) as a function of wavelength,
and fiber tapering factor.

In regard to the non linear parameter curves, these are depicted in Figure 2.4.

In a similar way, we can observe the following issues: a shift of the transmission

band to lower wavelengths and an increase of the value of the non linear parameter

as the tapering factor is increased. It can also be seen from Figure 2.4 that the non

linear parameter due to the air contribution is greater than that of the silica and

their difference increases as the tapering factor increases. For instance, the overall

non linear parameter values due to the air contribution for the untapered fiber are of

around 3 times lower than those of the tapered fiber with a tapering factor of 30%.



2.3. Numerical results 15

0.8 0.9 1 1.1 1.2 1.3
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Wavelength (µm)

N
on

lin
ea

r P
ar

am
et

er
  (

1/
W

⋅k
m

)

 

 

γ
a
,0%

γ
s
,0%

γ
a
,10%

γ
s
,10%

γ
a
,20%

γ
s
,20%

γ
a
,30%

γ
s
,30%

Figure 2.4: Computed non linear parameter of the fundamental guided modes of
the studied HC-PBGF as a function of wavelength and fiber tapering factor. The
solid and dotted curves correspond to the contributions of air and silica, respectively.

Besides the non linear parameter for air keeps almost constant in the wavelength

range of the transmission band. This feature can be understood if we recall that

only fundamental guided modes are considered. The changes that we expect in the

effective area for air of those modes are small. Hence the variation of the non linear

parameter for air is also small.

2.3.3 Dispersion characteristics

The dispersion parameter gives information about how much a light pulse is broad-

ened per unit of length, and per unit of wavelength as it propagates along the fiber.

Figure 2.5 shows the corresponding dispersion parameter for the studied HC-PBGF

as a function of wavelength and tapering factor. It is observed from Figure 2.5 that

as the tapering factor is increased, there is a shift of the dispersion curve to lower

wavelengths. The calculated zero-dispersion wavelength (ZDW) for the untapered

fiber is at around 1100 nm; as the tapering factor increases, the ZDW is blueshifted.

For example, a fiber tapering factor of 10%, the ZDW is at around 980 nm, and with
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Figure 2.5: Computed dispersion parameter of the fundamental guided modes of
the studied HC-PBGF as a function of wavelentgh and fiber tapering factor

a tapering factor of 30% we get a ZDW at around 780 nm. From Figure 2.5, we can

also see that the values of the dispersion curve increase faster with wavelength as

the tapering factor increases. Another feature that we can observe is the wavelength

range where anomalous dispersion regime, D > 0, takes place. As it was pointed out

above, the transmission bandwidth of the untapered HC-PBGF is of around 175 nm;

within this transmission wavelength range, anomalous dispersion takes place in a

range of 145 nm. On the other hand, for the fiber with a tapering factor of 30%, the

transmission bandwidth is of around 120 nm and within this range, the anomalous

regime is present in a wavelength range of 100 nm. Thus the range of wavelength

where anomalous dispersion takes place decreases for tapered fibers, compared to

that of the untapered fiber. However, it is observed that the rate of the anomalous

dispersion region to the transmission bandwidth is almost the same for all the fiber

structures. For this particular geometry of HC-PBGF, the anomalous dispersion

takes place in a percentage range of 83% of the total transmission bandwidth.

Second- (β2) and third-order (β3) dispersion parameters as a function of wave-

length for the studied fiber structures are depicted in Figure 2.6. Most of the allowed



2.3. Numerical results 17

0.8 0.9 1 1.1 1.2 1.3
−600

−500

−400

−300

−200

−100

0

100

200

Wavelength (µm)

β 2 (p
s2 /k

m
)

 

 

 0%
10%
20%
30%

(a)

0.8 0.9 1 1.1 1.2 1.3
0

2

4

6

8

10

12

14

Wavelength (µm)

β 3 (p
s3 /k

m
)

 

 

 0%
10%
20%
30%

(b)

Figure 2.6: Second and third-order dispersion parameters as a function of wave-
length, and fiber tapering factor.

wavelengths are in the anomalous region and, as expected, the effect of reducing the

cross secion size of the HC-PBGF is the shift of the ZDW to shorter wavelengths,

see Figure 2.6(a). With respect to the third-order dispersion parameter, their cor-

responding curves are shown in Figure 2.6(b). It can be noticed that all β3 curves

have positive values and their respective minima slightly decreases as the tapering

factor increases.
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2.4 Conclusions

A study of the effects that experience a HC-PBGF on its modal spatial parameters

such as the effective area, the dispersion parameter and the non linear parameter

due to a fiber tapering has been presented. The contributions of both the air and

the silica to the non linear parameter and modal effective area were shown. From

the results it was observed that the air contribution to the non linear parameter

predominates. It was also shown that as the fiber tapering factor increases, the

transmission band is blueshifted and its width decreases. Besides, the wavelength

range where anomalous dispersion takes place is almost the same for different fiber

tapering factors. On the other hand, the dispersion parameter curves blueshifts as

the fiber tapering factor increases and their values increases faster with wavelength.

The different features found on the effective area, the dispersion parameter and the

non linear parameter have a great of importance on the design of fibers because, for

example, they give information of the location of the ZDW, the wavelength range of

the anomalous dispersion regime and the spectral behavior of the dispersion of the

fiber. Thus the knowledge of the spectral behavior of the modal spatial parameters

of the fundamental mode is quiet important in order to design and optimize a HC-

PBGF that enhances a particular non linear optical effect.



3 Theory

In this chapter the equations that model the propagation of optical pulses in hollow-

core photonic bandgap fibers (HC-PBGFs) are presented. The generalized non linear

Schrödinger equation (GNLSE) is used to describe the optical pulse propagation,

and is numerically solved in order to show the evolution of femtosecond pulses along

the fiber. The behavior of higher-order solitons on its propagation through the

fiber are depicted. In particular, the propagation of higher-order solitons is studied

through the involved optical phenomena of soliton pulse compression (SPC) and

soliton self-frequency shift (SSFS).

3.1 Non linear pulse propagation

Propagation pulses in fiber optics are ruled by the generalized non linear Schrödinger

equation [52]:

∂A

∂z
=

∞
∑

k≥2

ik+1

k!
βk

∂kA

∂tk

+iγa(1− fa) | A |2 A+ iγafaA

∫ +∞

−∞

dt′Ra(t
′) | A(t− t′, z) |2

+iγs(1− fs) | A |2 A+ iγsfsA

∫ +∞

−∞

dt′Rs(t
′) | A(t− t′, z) |2, (3.1)
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where A = A(t, z) is the slowly-varying pulse envelope in a co-moving frame, t

is the time, and z is the spatial coordinate along the fiber. The corresponding

contributions to the Raman response function due to air, Ra, and silica, Rs, are

described by [71]:

Ri(t) = Θ(t)
(τ

(i)
1 )2 + (τ

(i)
2 )2

τ
(i)
1 (τ

(i)
2 )2

exp
[

−t/τ
(i)
2

]

sin
(

t/τ
(i)
1

)

, (3.2)

where Θ(t) is the Heaviside function, τ1 and τ2 are the Raman parameters, which

values for silica are well known and have the following values [71]: τ s1 = 12.2 fs,

τ s2 = 32 fs and fs = 0.18. Meanwhile, the estimated values for air are [52]: τa1 = 62 fs,

τa2 = 77 fs and fa = 0.5. The dispersion parameters, βk, can be computed expanding

the propagation constant, β(ω), around the central frequency ω0 as [71]

β(ω) = β(ω0) + β1(ω0)Ω + (1/2)β2(ω0)Ω
2 + (1/6)β3(ω0)Ω

3 + ..., (3.3)

where Ω = ω − ω0, and

βk(ω0) =
dkβ

dωk

∣

∣

∣

∣

∣

ω0

. (3.4)

Losses are neglected due to the short length of the fibers. Furthermore effects such

as self-steepening, two-photon absorption and plasma generation have also been ne-

glected in the model because it is assumed that the described spectral evolution takes

place away from the zero group-velocity dispersion, GVD, wherein such phenomena

are no significant [52].

3.1.1 Solitons

Temporal solitons in fiber optics are formed due to a balance between the GVD and

the selph-phase modulation, SPM [72], and are ruled by the equation:

∂A

∂z
+

i

2
β2

∂2A

∂t2
= i(γa + γs) | A |2 A. (3.5)
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Figure 3.1: Spectral and temporal evolution of a first-order temporal soliton over
one soliton period.

If we consider an input pulse of the form:

A(0, t) = N sech (t/t0), (3.6)

the pulse remains unchanged as it propagates along the fiber for N = 1 (see Figure

3.1), and presents a periodic behavior for integers values of N > 1 in such a way

that the initial pulse shape is recovered after a certain distance (see Figure 3.2).

The parameter N defines the soliton order and contains information about both the

optical fiber and the input pulse and is given by [73]:

N2 = γTP0LD = (t20γTP0)/|β2|, (3.7)

where LD is the dispersion lenght, P0 and t0 are the peak power and width of the

initial pulse, respectively.
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Hence for N = 1, a fundamental soliton is formed and, for N > 1, higher-order

solitons are generated. The soliton period is defined as the distance over which

higher-order solitons recover their original shape and is given by:

zsol =
π

2
LD =

π

2

t20
|β2|

. (3.8)

Given the HC-PBGF parameters: β2 = −67 ps2/km, γa = 7.702 × 10−3(W ·

km)−1, γs = 2.978× 10−3(W · km)−1; and the input pulse characteristics: t0 = 400

fs and P0 = 39.323 kW. It gets N = 1. From Figure 3.1, it can be seen the spectral

and temporal evolution of a fundamental soliton as it propagates along the fiber. As

it was mentioned above, the fundamental soliton does not change with propagation.

Increasing the peak power to P0 = 360 kW but keeping all the others parameters
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Figure 3.3: Spectral (a) and temporal (b) evolution of a third-order soliton over
one soliton period, with the inclusion of TOD.

fixed, it gets N = 3. Figure 3.2 presents the spectral and temporal evolution of a

third order soliton over one soliton period. In contrast to the fundamental soliton,

the soliton of order N = 3 experiences stages of compression and broadening of its

spectral and temporal shape and, at the distance zsol = 3.73 m, it recovers its initial

shape.

3.1.2 Third-order dispersion

The inclusion of third-order dispersion (TOD) in the propagation of soliton pulses

in optical fibers is taken into account through the addition of the TOD term into

equation (3.5), that is:
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∂A

∂z
+

i

2
β2

∂2A

∂t2
−

1

6
β3

∂3A

∂t3
= i(γa + γs) | A |2 A. (3.9)

Figure 3.3 shows the spectral (a) and temporal (b) evolution of a higher-order soliton

of N = 3 as it propagates in a HC-PBGF over one soliton period. TOD is included

in the propagation by using β3 = 2.6678 ps3/km. As we can see, the main effect of

TOD on the evolution of the higher-order soliton is the interruption of its periodic

behavior. At certain distance, the soliton breaks into sub-pulses. Such a break is

known as soliton fission; and it can be seen in the temporal evolution shown in

Figure 3.3(b), wherein we clearly note two pulses. In addition, from Figure 3.3a,

the spectral evolution of the pulse shows an oscillatory behavior in the region of

lower wavelength as long as it propagates along the fiber.

3.1.3 Intrapulse stimulated Raman scattering

The periodic nature of higher-order solitons is also disturbed when their propagation

is subjected to the influence of the intrapulse stimulated Raman scattering (ISRS).

Its inclusion into the NLSE is given by the integral terms in the equation:

∂A

∂z
+

i

2
β2

∂2A

∂t2
= iγa(1− fa) | A |2 A+ iγs(1− fs) | A |2 A

+iγafaA

∫ +∞

−∞

dt′Ra(t
′) | A(t− t′, z) |2 +iγsfsA

∫ +∞

−∞

dt′Rs(t
′) | A(t− t′, z) |2,

(3.10)

The ISRS effects are included by the coefficients: for the silica: τ s1 = 12.2 fs,

τ s2 = 32 fs and fs = 0.18; and for the air: τa1 = 62 fs, τa2 = 77 fs and fa = 0.5.

Figure 3.4 presents the spectral (a) and temporal (b) evolution of a soliton under

the influence of the ISRS. From 3.4(a), firstly we can see that, at certain distance,

the ISRS induces the soliton fission, and secondly the continuous redshift of the
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Figure 3.4: Spectral evolution (a) and temporal evolution (b) of a third-order
soliton over one soliton period, with the inclusion of ISRS.

fissioned fundamental soliton. Such a redshift is a characteristic effect of ISRS and

is called soliton self-frequency shift. Its physical origin comes from the delay nature

of the Raman response. It also can be seen that the input soliton is broken into its

three soliton components.

3.1.4 TOD and ISRS

In order to model accurately the evolution of a soliton, it is necessary to include both

the higher-order dispersion and the ISRS effects since, in the femtosecond regime,

these are the main effects that cause soliton fission. Figure 3.5 presents the evolution

of a higher-order soliton of N = 3 using Equation 3.1 with k=3. Once again the
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Figure 3.5: Spectral evolution (a) and temporal evolution (b) of a third-order
soliton over one soliton period, with the inclusion of TOD and ISRS.

third-order soliton is fissioned into its three components and the fundamental soliton

is redshifted. The effect of the TOD is such that it slows down the soliton redshift

as we can see from the Figure 3.5(a).

3.2 Applications

We can make use of the dynamics of higher-order solitons in fiber optics either to

compress or to shift in frequency an input pulse with the advantage that the fiber

itself works either as a compressor and as a frequency shifting device, respectively.

In the case of pulse compression, as it was mentioned above, the higher-order
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soliton undergoes periodic evolution patterns in which the soliton pulse experiences

an initial narrowing phase. Thus we can choose the appropriate lenght of the fiber

in order to achieve a compressed pulse with a particular or optimal compression

factor, which is related to the peak power of the initial pulse. The fiber compressor

device thus made is called soliton-effect compressor.

Let’s now define the useful physical parameters that characterize a pulse com-

pressor device. Firstly the pulse compression is quantified by the compression factor

that is defined by [69]:

FC =
tFWHM

tcomp

, (3.11)

where tFWHM and tcomp are the full-width at half maximum (FWHM) of the input

and output compressed pulses, respectively. Secondly the optimum lenght corre-

sponds to the location at which the central spike reachs its minimum temporal

value. The following empirical relation for the optimum length is used [74]:

zopt =
π

2

[

0.32

N
+

1.1

N2

]

LD, (3.12)

where LD is the dispersion length [71]. This previous expression has been proved

extensively in standard optical fibers for values for the soliton order, N, up to 50

and, recently, in hollow-core fibers with good aproximation to the experimental

values [75].

During the propagation of higher-order solitons along the fiber, some of the en-

ergy of the initial soliton pulse is distributed on the base of the pulse forming a

broad pedestal in the output compressed pulse. Hence, for technological applica-

tions, not only pulses with higher compression factors are desirable but also pulses

with a pedestal containing a minimum of energy. For such a reason, it is important
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to introduce a parameter which gives information about the quality of the com-

pressed pulse. The quality factor, QC , accomplishes such a task and is defined as

the fraction of energy that is contained in the output pulse with respect to that of

the input pulse, that is

Qc = 1−
Epedestal

100
, (3.13)

where Epedestal is the pedestal energy that gives the percentage of the total input

energy that is contained in the pedestal of the output (either compressed or shifted)

pulse. It is defined as [76]:

Epedestal =
| Etotal − Esech |

Etotal
× 100, (3.14)

where Etotal is the total energy contained in the output pulse and Esech is the energy

of a hyperbolic-secant pulse having the same peak power and FWHM as the output

pulse.

The second application that makes use of the dynamics of higher-order solitons

in fiber optics is related to the self-frequency shift of the pulse that is induced by

the ISRS. Such a frequency shift depends on mainly two parameters: the soliton

order of the input pulse and the non linear parameter of the optical fiber. In this

work, the quantification of the SSFS is done by obtaining the final increment, ∆λ,

of the central wavelength with respect to that of the initial pulse.



4 Results

In chapter 2, the qualitative behavior that the spatial parameters of a HC-PBGF

experience due to the increase or decrease of its cross section size was analyzed.

Furthermore, in chapter 3, it was seen that higher-order solitons show stages of

compression and broadening of its spectral and temporal shape as they propagate

along the fiber,and, at the distance called soliton period, it recovers its initial shape.

In the presence of perturbation, the periodic behavior of the higher-order solitons is

interrupted, provoking soliton fission and then soliton self-frequency shift (SSFS).

Now, in this chapter, these phenomena, soliton pulse compression (SPC) and

SSFS, are investigated under the influence of variations of the characteristics of

the fiber and the input soliton pulse, focusing in the quality of the output pulses.

It is worth to mention that SPC and SSFS are non linear phenomena that can

take place in HC-PBGFs and that are in continuous investigation in order to find

new light sources with specific characteristics. In particular, this chapter presents

results obtained for both non linear phenomena in a proposed seven-cell HC-PBGF

by solving the generalized non linear Schrödinger equation.

Thus two numerical studies are presented: the first one presents a numerical

investigation on SPC and the impact of the variation in the cross section size of the

fiber. And the second one performs a numerical investigation of low-order soliton

29
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Figure 4.1: Cross section and fundamental air-guided mode of the modeled HC-
PBGF. The colored (white) areas indicate silica (air) regions.

evolution in order to analyze the pulse quality in soliton pulse compression and SSFS

in three fiber structures with different cross section sizes.

4.1 Modeled HC-PBGF

The modeled HC-PBGF structure consists of a triangular lattice of rounded hexago-

nal holes and an air core formed by seven-missing hexagonal unit cells as it is shown

in Figure 4.1. The fiber transmission behavior is ruled by its geometry parameters,

such as the hole diameter, d, the pitch, Λ, the diameter of curvature at the corners,

dc, the circle diameter, dp, the silica ring thickness, t, and the core size, Rc. The

core design of the fiber has a direct impact on the modal properties of the fiber.

In this way, the rounded hexagonal holes in the structure of the fiber were chosen

mainly for two important reasons: firstly, they increase the width of the transmis-

sion band of HC-PBGFs [68], and, secondly, their shape is typically that founded

in commercial fibers.
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Figure 4.2: Effective index as a function of the wavelength from 0 to 5% of tapering
factor for the studied structure.

4.2 Soliton pulse compression

In this section a numerical study of soliton pulse compression in a seven-cell HC-

PBGF (shown in Figure 4.1) is presented. The enhancement of both the compression

factor and the pulse shape quality of 360 nJ femtosecond pulses at the wavelength

of 800 nm by tuning the cross section size of the fiber is investigated. Let’s consider

a hyperbolic secant input pulse in the form

A(0, t) =
√

P0 sech (t/t0), (4.1)

with characteristics values of P0 = 3.6 × 105W and t0 = 500 fs for the peak power

and the half width of the input pulse, respectively.

4.2.1 Influence of tuning the HC-PBGF

Let’s study the effects of tuning the cross section size of the fiber on dispersion and

non linear parameters, which are key features to take into consideration because

they determine both the quality and the compression factor of the pulse. Firstly,
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Figure 4.3: Second- (a) and third-order (b) dispersion parameters as a function of
wavelength at different tapering factors.

both the working wavelength at 800 nm and the initial cross section of the fiber are

defined. The main geometric parameters of the original structure were: d = 1.92µm,

Λ = 1.97µm, dp = 0.51µm, dc = 1.03µm and Rc = 2.82µm. Let’s tune (vary) the

cross section size of the fiber and obtain the behavior of the dispersion and non

linear parameter. This tuning is quantified by the tapering factor, which is defined

as the percentage of reduction of the cross section size of the fiber with respect to

its original value.

From Figure 4.2, it can be seen that the HC-PBGF without tapering presents
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Figure 4.4: Second- and third-order dispersion parameters as a function of tapering
factor at 800 nm.

fundamental air-guided modes from 760 nm to 870 nm, which represents a trans-

mission bandwidth of 110 nm. As long as the tapering factor gets increased, the

allowed modes shift to lower wavelengths. For a tapering factor of 5% the transmis-

sion bandwidth goes from 710 to 820 nm.

The second- (a) and third-order (b) dispersion parameter as a function of wave-

length at different tapering factors are depicted in Figure 4.3. For all the studied

structures, the second-order dispersion parameter presents an anomalous behav-

ior in most wavelengths within the transmission bandwidth. In particular, for the

wavelength of interest in this work, 800 nm, it can be observed that as the taper-

ing factor increases, the second-order dispersion takes more negative values and the

upper limit of the transmission bandwidth, of the air-guided mode, approaches to

such wavelength (see Figure 4.3a). Meanwhile, the third order dispersion parameter

is shown in Figure 4.3b. The first feature that it can be pointed out is that β3 is

positive for all the wavelength range. Furthermore, as the tapering factor increases,

β3 also increases, at the wavelength of 800 nm.

The dispersion parameters as a function of tapering factor are shown in Figure
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4.4, at a wavelength of 800 nm. It can be observed, from Figure 4.4, that the

second-order dispersion β2 = −4 ps2/km for the untapered HC-PBGF, decreases

with negative values as the tapering factor increases. For tapering factors ≥ 2%,

β2 takes values away from zero and decreases quickly. For example: β2 = −53

ps2/km when the tapering factor is 2% and decreases until β2 = −483 ps2/km for

a tapering factor of 5%. On the other hand, the TOD parameter, β3, becomes

a monotonically increasing function for percentages of the tapering factor greater

than one. A positive and large value of TOD has a deleterious effect on pulse

compression which, in turn, make the quality of the pulse get reduced. So it is

necessary to monitor their behavior as a function of the tuning of the cross section

size of the fiber. This can be done through the relative dispersion slope, RDS, that is

defined as the ratio between the third-order dispersion parameter and the absolute

value of the second-order dispersion parameter, and is shown in Figure 4.6. The

behavior of RDS can be divided in two regions: for tapering factor dimensions lower

and greater than 1 %. In the former region, the RDS decreases quickly from values

of 100 fs to values around 30 fs; meanwhile, in the latter region, it keeps close to

values around 25 fs.
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We can see from Figure 4.5 the silica and air contributions to the non linear

parameter as well as the total non linear parameter as a function of the tapering

factor. The main contribution to the total non linear parameter comes from the

air regions. The total non linear parameter, γT , shows an increasing behavior, with

values around 0.025 1/(W km), as the tapering factor increases. Figure 4.6 also

shows the ratio of γa/γs. It presents an increasing behavior for tapering factors

lower than 2%, whereas it decreases for larger values. However, in almost all the

tapering factor range shown in the figure, their values remain in the range between

2 and 2.5, which means that the contribution of air to the non linear parameter is

approximately twice the value of that corresponding to the contribution of silica.

4.2.2 Pulse shape quality

In order to improve the pulse shape quality, let’s chose tapering factors larger than

2 % since according to Figure 4.6, in this range, the RDS reaches smaller values.

Results are only presented for tapering factors less than 5%; for higher values, there

is no fundamental guided mode at 800 nm because the transmission band of the

corresponding HC-PBG fiber structure shifts towards lower wavelengths due to the
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tuning of the cross section size of the fiber [77]. As it is shown next, greater values

of RDS result in a poor pulse shape quality. This can be observed in Figure 4.7,

wherein it is shown the way in which a light pulse develops a pedestal energy as

it propagates along the fiber for different tapering factors. For a given tapering

factor, the pedestal energy monotonically increases, reaching its maximum value at

a particular distance, from which it gets decreased and starts showing an oscillatory

behavior. At a particular length, the pedestal energy keeps having almost unchanged

values, indicating the formation of the fundamental soliton, which is fissioned from

the induced higher-order soliton. On the other hand, we can also observe from

Figure 4.7 that the maximum of the pedestal energy increases as the tapering factor

decreases. The lower value of the maximum of the pedestal energy, which is around

25%, is found for a tapering factor of 5% and for a length of around 0.2 m. It is also

important to underline, for instance, that for a tapering factor of 2%, which have a

value of RDS at around 30 fs, the pedestal energy reaches significant values that are
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a detriment to the pulse shape quality.
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Figure 4.8: Full width at half maximum (a), FWHM, and compression factor (b)
as a function of the propagation length of a pulse and for different tapering factors.

Figure 4.8(a) shows the FWHM of pulses as a function of the propagation dis-

tance and for different tapering factors. We can observe that, for a given tapering

factor, the pulse experiences a first stage of compression in which the FWHM of the

pulse reaches their minimum temporal value at a particular propagation length. At

a second stage, the FWHM of the pulse shows and oscillatory behavior and finally,

it gets an almost constant value, indicating the formation of red shifted solitons.

Such solitons are fundamental solitons that arise as a consequence of the soliton
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fission. Besides, it can also be seen from Figure 4.8(a) that the minimum temporal

width is reached at shorter distances as the tapering factor increases (or RDS de-

creases). In Figure 4.8(b), it can be seen the compression factor as a function of the

propagation distance and for different tapering factors. For a given tapering factor

the compression factor behavior is such that it increases with propagation distance

until it reaches its maximum value. On the other hand, the maximum of each com-

pression factor curve decreases as the tapering factor increases and it is found at

shorter propagation lengths. This behavior is explained as follows: the temporal

width of the soliton is proportional to β2; thus the more negative the β2 value is,

the greater the temporal width is. This statement is reflected on the behavior of the

lower value of the minimum of the FWHM of the curves of Figure 4.8. It is gotten

for a tapering factor of 5% and at shorter propagation distance. At such tapering

factor, the second-order dispersion has the greatest value. Hence, the compression

factor must get its maximum more decreased for a tapering factor of 5% and be

found at a shorter propagation length.
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In order to evaluate the best option of optical fiber for pulse compression, it is

necessary to take into account both features, the compression factor and the pedestal

energy of a propagating pulse. Hence, it is desirable to have a pulse that have the

greater compression factor and, simultaneously, the lower pedestal energy in order

to have a better pulse shape quality. From Figure 4.8(b), on the one hand, it can be

observed that higher pulse compression factors arise for fibers with the lower tuning

factors. On the other hand, from Figure 4.7, we can see that the pulse develops

a pedestal energy during its propagation along the fiber. The pedestal energy can

reach values greater than 40%. In such a case, the quality of the pulse shape is

seriously compromised. It can also be observed from Figure 4.7 that the compressed

pulse develops the lower pedestal energy (< 40%) when it propagates in HC-PBGFs

with tuning factors of 3.5, 4, 4.5 and 5%. Figure 4.9 shows the behavior of the

pedestal energy as a function of the compression factor for these tuning factors.

When the pedestal energy reaches a value of 20%, the compression factor is around

1.8 for all fibers. For compression factors above 1.8, the pedestal energy increases

as the tapering factor decreases. We consider that a good choice of fiber structure

for pulse compression can be that wherein a pulse propagates and develops pedestal

energies with values ≤ 30%. With such standard of quality, the HC-PBGFs with

tapering factors of 3.5% and 4% are discarded due to their high pedestal energy

values, 30-40%, although their compression factors reach values greater than 6.

Thus, the better choices for pulse compression are those fibers with tuning factors of

4.5% and 5%, which promote output compressed pulses with compression factors and

pedestal energies of Fc = 5.7 and Ep = 23%, Fc = 4.9 and Ep = 18%, respectively.

However, the best choice is that fiber structure characterized by a tapering factor of

4.5%, as it is shown in Figure 4.9, since in that structure the pulse has the greatest

pulse shape quality (or lower pedestal energy) along with the highest compression

factor. In Figure 4.10, the optimum output compressed pulses are depicted for HC-
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Figure 4.10: Temporal pulse shape of the optimum output compressed pulses for
HC-PBGFS with tapering factors from 3.5 to 5%.

PBGFs with tapering factors from 3.5 to 5%. It can be seen that the energy of the

output compressed pulses is mainly distributed in its center; the pedestal energy, in

contrast, is distrubuted in the edges. It can also be observed that, as the tapering

factor increases, both the compression factor and the pedestal energy also increase,

as it was previously described.

Figure 4.11 shows both the temporal and the spectral shape of the input and

optimum compressed pulses. The corresponding compression factor has the value

of 5.7 and it has a pedestal energy value of Epedestal = 23%, as it is shown in Figure

4.9. Such a compression factor is reached only after the pulse has been propagated

through a distance of 31 cm (see Figure 4.8(b)). The above compression factor result

is worthy of note: if we compare it with respective values found in previous works,

then it can be seen that, although higher compression factors are achieved, they are

obtained at several meters of propagation of the pulse along the HC-PBGF.
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Figure 4.11: Temporal pulse shape (a) and frequency spectrum (b) of the optimum
compressed pulse for a HC-PBGF with tapering factor of 4.5%.

4.2.3 Conclusions

We have studied numerically the influence of tuning the cross section size of a

seven-cell hollow-core photonic bandgap fiber on both the pulse shape quality and

the compression factor for unchirped pulses of 500 fs (or 881.5 fs of FWHM). It was

found that a tuning of the cross section size of the fiber with a tapering factor of

4.5% improves both features. Our numerical results indicate a maximum compressed

pulse with a compression factor of 5.7 with a temporal FWHM of 153.8 fs. The pulse

reaches a peak power of 1.5851 MW with 77% of pulse shape quality. The length of
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the fiber at which the compressed pulse is reached is of 31 cm. To my knowledge,

higher compression factors have only been obtained by using several meters of HC-

PBGFs. Here, the present results show that, with an appropriate tuning of the cross

section size of HC-PBGF, pulse compression can be improved significantly.

4.3 Soliton self-frequency shift
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Figure 4.12: Effective index as a function of wavelength for the A, B and C
structures.

In this section a numerical investigation of low-order soliton evolution in the

proposed seven-cell HC-PBGF shown in Figure 4.1 is reported. In the numerical

simulation, the pulse quality evolution in soliton pulse compression and soliton self-

frequency shift is investigated in three fiber structures with different cross section

sizes. In the simulation, unchirped soliton pulses, of 400 fs, at the wavelength of

1060 nm are considered. In the analysis, let’s consider a hyperbolic secant input

pulses in the form of equation (4.1) where the peak power takes values in such a way

that the corresponding input soliton orders are N = 1.5, 2, 2.5, 3 and t0 = 400 fs is

the input-pulse width.
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Figure 4.13: Second- (a) and third-order (b) dispersion parameters as a function
of wavelength for the A, B and C structures.

Three HC-PBGF structures, namely A, B and C, are studied. The A fiber

structure has the following main initial parameters: d = 2.46 µm, Λ = 2.53 µm,

dp = 0.66 µm, dc = 1.32 µm and Rc = 3.61 µm. Meanwhile, the cross section

size of the B and C fiber structures have been reduced to 1 and 2 %, respectively,

with respect to that of the A structure. In other words, we consider that the fiber

preserves its original form and geometry and only experiences an uniform decrease

of its transversal dimensions.

Effective index as a function of wavelength for the three studied HC-PBGFs
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are shown in Figure 4.12. For the A structure, fundamental guides modes are found

within the wavelength range from 980 nm to 1112 nm; meanwhile, for the B structure

they are found from 970 nm to 1104; and for the C structure, the fundamental guided

modes are found from 960 nm to 1094 nm.

Second- and third-order dispersion parameters as a function of wavelength for

the studied structures are depicted in Figure 4.13. The transmission bandwidth

is ≈ 130 nm. Most of the allowed wavelengths are in the anomalous region. The

zero-dispersion wavelengths (ZDWs) for the studied HC-PBGFs are located at 1015,

1005 and 995 nm, respectively. In addition, the second-order dispersion parameter

values, for the A, B, and C fiber structures, at λ0 = 1060 nm, are the following:

-120, -245 and -457 ps2/km, respectively. As expected, the effect of reducing the

cross section size of the HC-PBGF is the shift of the ZDW to shorter wavelengths

and, consequently, the second-order dispersion parameter, shown in Figure 4.13(a),

takes more negative values. From Figure 4.13(b), it can be seen that β3 presents

the same qualitative behavior for the three structures. TOD curves shift to shorter

wavelengths and the value of β3 at 1060 nm gets increased as the cross section size

of the fiber is reduced. Their corresponding β3 values are the following: 5, 10 and 16

ps3/km, respectively. The respective energy of input solitons with orders N =1.5,

2, 2.5 and 3 are: 125.5, 223.1, 348.6 and 501.98 nJ, for the A fiber structure; 240,

426, 666.51 and 960 nJ, for the B fiber structure; and .422, 0.751, 1.173 and 1.69 µJ

for the C fiber structure, respectively.

We can see from Figure 4.14 the silica and air contributions to the total non

linear parameter as a function of wavelength for the A HC-PBGF structure. Similar

behavior of the non linear parameter for the B and C structures is observed. A

reduction of the cross section size of the fiber of 1 and 2% induces an increment

of the magnitude of γT , at the wavelength of 1060 nm, of 0.057 ×10−5 and 0.131
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Figure 4.14: Non linear parameters contributions for the studied HC-PBGFs A
structure as a function of wavelength. The total non linear parameter, γT , is given
by the sum of the contributions of the silica, γs, and of the air, γa.

×10−5 1/(W · km), respectively. We observe that the main contribution to the non

linear parameter comes from the air region. The principal feature of γT , seen in all

corresponding curves, is the almost flat region that is present in the middle of the

transmission bandwidth. In addition, there is an increase in both the low and the

upper sides of the respective curves. Besides, γT takes higher values as the cross

section size is reduced.

Figure 4.15 shows the relative dispersion slope for the three studied HC-PBGFs

as a function of wavelength. It can be observed that the reduction of the cross

section size of the HC-PBGF produces lower values for the RDS and a decrease of

the wavelength range, within the anomalous region, wherein the input pulse can

propagate. The latter can be understood recalling that the transmission window is

shifted to shorter wavelengths due to the reduction of the cross section size of the

HC-PBGF, as it can be seen from Figure 4.13. The transmission wavelength ranges
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Figure 4.15: Relative dispersion slope, RDS, as a function of wavelength, for the
three studied HC-PBGFs.

are ≈ 52, 42 and 32 nm for the A, B and C fiber structures, respectively.

Hence, a study of the evolution of a soliton pulse of order N , as it propagates

along the HC-PBGF, is studied by taking into account the effects of second- and

third-order dispersion, self-phase modulation and intra pulse Raman scattering.

During the propagation, the pulse experiences an initial stage of compression (or a

broadening of the spectrum) and, after some distance, it reaches maximum compres-

sion (or maximum bandwidth), which corresponds to the optimum length, zopt, that

indicates the onset of the soliton fission. The resultant sub-pulse undergoes stages of

compression and broadening experiencing a continuous shift to longer wavelengths

due to the Raman gain [78]. Then it follows the formation of a fundamental soliton

which central wavelength keeps redshifting as it propagates along the fiber. This

behavior can be seen, in detail, in Figure 4.16, which shows density plots for the

temporal and spectral evolution of an input soliton pulse, of order N = 2, as it
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Figure 4.16: Density plots of the temporal (a) and spectral (b) evolution of an
input soliton pulse of order N = 2, along a propagation length of ten meters, in a
HC-PBGF.

propagates along ten meters of the A HC-PBGF. In the following, both the tempo-

ral and spectral evolution of a soliton pulse will be studied. Firstly, let’s study the

optimum compressed soliton pulse and, secondly, the maximum SSFS.

Figure 4.17 shows the compression factor experienced for the soliton pulse as it

propagates through the different studied HC-PBGFs. The soliton pulse propagates

and undergoes a first stage of compression in which it reaches a minimum temporal

width at the optimum length, zopt (see equation 3.12). Later, a second stage is

observed, in which there is an oscillatory behavior of compression and broadening

of the pulse width; and, finally, it follows a decreasing tendency indicating the

formation of a fundamental soliton which is fissioned from the input pulse. We can

also observe from Figure 4.17 that the maximum compression factor increases with

a higher value of the soliton order.
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Figure 4.17: Compression factor as a function of the propagation length and of
soliton number, N , for the studied HC-PBGFs: (a) A, (b) B, and (c) C .

Furthermore, it is worth to point out that the maximum values of the compres-

sion factor of the pulse in all three studied HC-PBGFs are approximately equal,

but the propagation length at which those values are reached decreases as the soli-

ton order increases, and the cross section size of the fiber is reduced (or for those

structures with larger negative values of β2).

Figure 4.18 shows the quality factors of the pulse as it propagates along the three

HC-PBGFs. The behavior of the quality factor is such that it firstly decreases to a

minimum value; then it experiences an oscillatory stage and, after certain distance,
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Figure 4.18: Pulse quality factor as a function of propagation length and of soliton
number, N , for the studied HC-PBGFs: (a) A, (b) B, and (c) C .

it almost keeps a constant value. The first two stages correspond to the stages of

compression and broadening of the initial pulse. Meanwhile, in the last stage, the

formation of a fundamental soliton takes place. Another feature seen in Figure 4.18

is that higher-order input solitons results in, as an average, a general decrease of the

quality factor, and a decrease of the distance at which the fundamental soliton is

formed. For input solitons with orders of N = 1.5, 2, 2.5 and 3, the quality factors

of the red shifted solitons is ≈ 0.94, 0.9, 0.85 and 0.8, respectively. Since, for higher-

order input solitons, their quality factors are negatively affected, let’s only present
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Figure 4.19: Output compressed pulses in the A (a)-(c) and B fiber (d)-(f)
structures.

results for up to N = 3. It can be seen, from both Figure 4.18 and Figure 4.17, that

in order to achieve higher compression factors, it is necessary to increase the value

of the soliton order. However, by doing so, it results in a decrease of the quality of

the compressed pulse.

This can be seen more clearly in Figure 4.19 where the optimum output com-

pressed pulses are depicted for the A and B HC-PBGFs, for N = 2, 2.5 and 3.

Considering an input pulse with a value of the soliton order of N = 2, the compres-

sion factor reaches a value of 3.2 with a pulse quality factor of 0.88 for the A fiber

(see Figure 4.19(a-c)). Meanwhile, for an input soliton pulse of N = 3, it increases

until 5.5; however, the pulse quality factor decreases to a value of 0.72. Similar

behavior is observed for the compressed pulses for the B fiber structure (see Figure

4.19(d-f)).



4.3. Soliton self-frequency shift 51

−3 −2 −1 0 1 2 3
−40

−20

0

P
 
(
d
B

)

 

 

Input
Output

z
 
(
m

)

t (ps)
−3 −2 −1 0 1 2 3
0

0.1

0.2

(a)

−3 −2 −1 0 1 2 3
−40

−20

0

P
 
(
d
B

)

 

 

Input
Output

z
 
(
m

)

t (ps)
−3 −2 −1 0 1 2 3
0

0.1

(b)

−3 −2 −1 0 1 2 3
−40

−20

0

P
 
(
d
B

)

 

 

Input
Output

z
 
(
m

)

t (ps)
−3 −2 −1 0 1 2 3
0

0.05

0.1

(c)

Figure 4.20: Upper panels: output compressed pulses as a function of soliton
order: (a) N = 2, (b) N = 2.5 and (c) N = 3, for the C fiber structure. Lower
panels: corresponding density plots of the temporal evolution of the soliton pulse.

The temporal evolution of the pulse as well as the output compressed pulse as a

function of soliton order for the C structure is shown in Figure 4.20, for N = 2, 2.5

and 3. The propagation lengths at which the pulse reaches its maximum compression

factor are: 23, 16 and 12 cm for soliton orders of 2, 2.5 and 3, respectively. And their

quality (compression) factors are: QC = 0.88 ( FC = 3.3), QC = 0.79 (FC = 4.5)

and QC = 0.73 (FC = 5.6), respectively. Table 4.1 summarizes the results obtained

for the SPC in the three studied HC-PBGFs structures.

We can observe, in Figure 4.21, the spectra of the output-pulse power after 10

m of propagation length. If the input soliton number increases, the SSFS also does.

For the A fiber structure, the soliton of order N = 3 reaches a central wavelength of

λ0 = 1076.5 nm. On the other hand, for the B fiber structure, the soliton of order

N = 3 shows an improvement of the SSFS reaching a maximum central wavelength

of λ0 = 1082.4 nm.
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Table 4.1: Output parameters of the optimum compressed pulse for the studied
HC-PBGFs structures.

Structure N FC QC zopt (cm)

1.5 2.2 0.94 142
2 3.2 0.88 88

A 2.5 4.4 0.79 61
3 5.5 0.72 46

1.5 2.1 0.93 71
2 3.3 0.86 43

B 2.5 4.5 0.78 30
3 5.6 0.71 23

1.5 2.2 0.94 38
2 3.3 0.88 23

C 2.5 4.5 0.79 16
3 5.6 0.73 12

In Figure 4.22, the spectra of the output-pulse density power for the C fiber

structure can be seen. The soliton of order N = 3 reaches the largest SSFS after

a propagation length of 6 m: λ0 = 1088.4 nm. Such an improvement can be un-

derstood if we recall that the C structure presents higher values for its non linear

parameter than those corresponding to the A and B fiber structures (see Figure

4.14). We can also see from Figure 4.22 that the higher value of the soliton order,

the larger initial shift of the fundamental soliton is. After an initial stage of acceler-

ated soliton redshift, it decelerates to a lower value. For example: for N = 2, after

a propagation length of 5 m, the fundamental soliton redshifts 11.6 nm; meanwhile,

in the following 5 m of propagation, it only redshifts 3.2 nm. It is worth to under-

line that, according to the results, if the soliton order is increased, the SSFS also

does. Table 4.2 lists the output parameters of SSFS for input soliton pulses of order

N = 2, 2.5, 3, respectively, for the three HC-PBGFs structures.

In summary, for soliton pulse compression, it has been observed that a reduction
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Figure 4.21: Spectra of the output-pulse power after 10 m of propagation in the
A fiber structure (a)-(c) and B fiber structure (d)-(f). N is the soliton order and
∆λ is the SSFS.

of the cross section size of the HC-PBGF results in that the second-order disper-

sion takes highly-anomalous values and, as a consequence, the optimum length for

compression is reduced. The present results also show a well known behavior: the

greater soliton order (higher power), the higher compression factor that is obtained.

This has a cost in the compressed-pulse quality: high values of N results in a re-

duction in its quality. The impact of the non linear parameter on SSFS is clearly

visible, since for the same order of soliton, the fiber structure wherein the SSFS is

greater is that with the largest non linear parameter. On the other hand, it also

seen that a larger SSFS is reached, at shorter propagation distance, when the order

of the soliton takes greater values and the second-order dispersion is more highly

anomalous. The input-soliton order influences on both the SSFS and the amount of

energy that will be present in the output pulse, or energy conversion from the input
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Figure 4.22: Spectra of the output-pulse power (upper panels) and density plots
(lower panels) of the spectral evolution of input soliton pulses in the C fiber struc-
ture. The corresponding values of the soliton order and the propagation distance
are the following: (a) N = 2, z=10 m; (b) N = 2.5, z=10 m; and (c) N = 3, z= 6
m.

to the output soliton pulse. It is important to note that a high value of the soliton

order produces a reduction in the amount of energy contained in the shifted soliton

pulse. However, the results show that for a value of N = 3, the output pulse will

contain approximately 80% of the energy of the higher-order input soliton.

4.3.1 Conclusions

A numerical study of the low-order soliton evolution in a three hollow-core photonic

bandgap fibers, which differ from each other in their cross section size, has been

performed. Unchirped pulses of 400 fs of width and with central wavelength of

λ0 = 1060 nm were considered. The analysis was focused on the pulse quality

evolution in SPC and SSFS. The results showed that the seven-cell HC-PBGFs,

with a cross section size reduction of 2%, present larger anomalous values of the
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Table 4.2: Output parameters of the soliton self-frequency shift for the studied
HC-PBGFs structures, for N = 2, 2.5 and 3. The propagation length is z = 10 m
except for the case wherein N = 3 for the C structure, which z = 6 m.

Structure N ∆λ (nm) QC

2 7.7 0.89
A 2.5 12.2 0.86

3 16.5 0.80

2 10.6 0.89
B 2.5 16.6 0.85

3 22.4 0.80

2 14.8 0.89
C 2.5 23.4 0.85

3 28.4 0.80

second-order dispersion and greater values of the non linear parameter. If an input

soliton pulse with order of N = 3 (which corresponds to an energy of 1.69 µJ )

propagates a distance of 12 cm, it gets compressed with a compression factor of 5.6

and quality factor of 0.73. Meanwhile, after the input soliton pulse propagates 6 m,

its central wavelength redshifts to a shift value of ∆λ = 28 nm and presents a quality

factor of ≈ 0.8. This work shows that in both phenomena SPC and SSFS, not only

is important to have either a high compression factor or a large displacement of the

output soliton pulse, respectively, but also a high quality of the output pulse is.

For the SPC it is desirable that the compressed pulse has the minimum pedestal

energy, which implies a high quality factor. On the other hand, in the case of the

SSFS phenomenon, a high pulse quality results in that most of the energy of the

input soliton pulse is transferred to the shifted output soliton pulse. Therefore,

an analysis of the pulse quality during the propagation of soliton pulses along HC-

PBGFs is necessary in order to find an appropriate fiber structure as well as the

input soliton pulse that promotes both SPC and SSFS.
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5 Conclusions

In summary, a numerical investigation was mainly performed on soliton pulse com-

pression and soliton self-frequency shift in hollow-core photonic bandgap fibers, at

wavelengths of 800 nm and 1060 nm. The effects of both reducing the cross section

size of the fiber structures and the input soliton order on such non linear phenomena

has been studied. A pulse quality analysis has been introduced during the evolution

of soliton pulses. In order to modelate the HC-PBGF structures, the commercial

software Comsol was used. The generalized non linear Schrödinger equation was

used in order to model the propagation of light pulses along the fiber.

In the first case, the influence of tuning the cross section size of a seven-cell

hollow-core photonic bandgap fiber on both the pulse shape quality and the com-

pression factor for unchirped pulses of 500 fs and at the wavelength of 800 nm was

numerically studied. It was found that a tuning of the cross section size of the fiber

with a tapering factor of 4.5% improves both features. The numerical results indi-

cate a maximum compressed pulse with a compression factor of 5.7 with a temporal

FWHM of 153.8 fs. The pulse reaches a peak power of 1.5851 MW with 77% of

pulse shape quality. The length fiber at which the compressed pulse is reached is of

31 cm. The predicted compression factor is 3 times larger than that experimentally

obtained in such propagation length of the pulse in a hollow-core photonic bandgap

57
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fiber. Here, the results show that, with an appropriate tuning of the cross section

size of a hollow-core photonic bandgap fiber, pulse compression can be improved

significantly.

In the second case, a numerical investigation of low-order soliton evolution in a

proposed seven-cell hollow-core photonic bandgap fiber is reported. In the numeri-

cal simulation, the pulse quality evolution in soliton pulse compression and soliton

self-frequency shift in three fiber structures with different cross section sizes was in-

vestigated. In the simulation, unchirped soliton pulses (of 400 fs) at the wavelength

of 1060 nm were considered. The results showed that the seven-cell HC-PBGFs,

with a cross section size reduction of 2%, presents larger anomalous values of the

second-order dispersion and greater values of the non linear parameter. If an input

soliton pulse with order of N = 3 (which corresponds to an energy of 1.69 µJ )

propagates a distance of 12 cm, it gets compressed with a compression factor of 5.6

and quality factor of 0.73. Meanwhile, after the input soliton pulse propagates 6 m,

its central wavelength redshifts to a shift value of ∆λ = 28 nm and presents a quality

factor of ≈ 0.8. This work shows that in both phenomena SPC and SSFS not only

is important to have either a high compression factor or a large displacement of the

output soliton pulse, respectively, but also a high quality of the output pulse is. For

the SPC it is desirable that the compressed pulse has the minimum pedestal energy,

which implies a high quality factor. On the other hand, in the case of the SSFS

phenomenon, a high pulse quality results in that most of the energy of the input

soliton pulse is transferred to the shifted output soliton pulse. Therefore, an analy-

sis of the pulse quality during the propagation of soliton pulses along HC-PBGFs is

necessary in order to find an appropriate fiber structure as well as the input soliton

pulse that promotes both SPC and SSFS.

From the results, it can be inferred that an appropriate tuning of the HC-PBGF
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structure can promote one or another non linear phenomena. However, the required

fine tuning can be a practical limitation.

I belive the work can have practical applications and the results will certainly be

useful from the point of view of engineering of photonic crystal fibers and optimizing

their performance for pulse compression and soliton self-frequency shift. I hope that

the results shown here will motivate the experimental investigation in this new and

important technology.
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March, M. Zacarés, Ll. Monreal, J. M. Isidro, and P. Fernández de Córdoba,
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V. Gorbach, D. V. Skryabin, and J. C. Knight, Solitons in hollow core photonic

crystal fiber: Engineering nonlinearity and compressing pulses, J. of Lightwave

Technol. 27, 1644 (2009).

[52] A. V Gorbach and D. V Skryabin, Soliton self-frequency shift, non-solitonic

radiation and self-induced transparency in air-core fibers, Optics Express 16,

4858 (2008).

[53] O. H. Heckl, C. J. Saraceno, C. R. E. Baer, T. Südmeyer, Y. Y. Wang,
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