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i

What we observe is not nature itself,

but nature exposed to our mode of questioning.

Werner Heisenberg

To my mom,

sisters and brothers.
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Resumen

Primeramente, se presentan espectros de reflectancia anisotrópica y generación de se-

gundo armónico de superficies limpias y reconstruidas de Si(100). El cálculo se realiza en

base al modelo de enlaces polarizables donde el cristal de Si se modela como un conjunto

de dipolos puntuales los cuales responden a los campos electromagnéticos incidentes.

Cada dipolo se considera que se encuentra localizado a la mitad de cada enlace Si-Si. El

modelo incorpora la reconstrucción de la superficie a través del efecto del campo local.

Se calcula el espectro óptico para una superficie con reconstrucción 2×1 como función del

buckling del d́ımero y se muestra que la estructura atómica que reproduce los espectros

de reflectancia anisotrópica y generación de segundo armónico es aquella con un buckling

de 0.6 Å. Se presentan, además, los espectros para una superficie con reconstrucción

c(4×2) y se comparan con los resultados experimentales.

Por otro lado, se aplica un modelo microscópico para calcular las diferentes contribu-

ciones a la susceptibilidad no lineal de segundo orden que se requiere en el cálculo de

la generación de segundo armónico. Estos términos se clasifican como transiciones 1ω y

2ω y, de acuerdo con el carácter de los estados de superficie o de bulto entre los cuales

las transiciones se llevan a cabo. Como ejemplo, se analizan los efectos de estas sus-

ceptibilidades microscópicas en el espectro de generación de segundo armónico de una

superficie de Si(100)c(4 × 2) limpia. Se analizan las siguientes resonancias que se han

observado experimentalmente: la resonancia E1 del Si de bulto a 2ω ∼ 3.3 eV y las

resonancias a 2ω ∼ 2.2 y 3 eV. Nuestro formalismo nos permite comprender el origen de

estas resonancias de superficie en la generación de segundo armónico.

Finalmente, mediante el modelo microscópico anterior se estudia el efecto de campos

eléctricos dc superficiales en la generación de segundo armónico. Se obtienen espectros

de generación de segundo armónico de superficies de Si(100) dopadas con Boro, limpias y

con adsorsión de H . Se encuentra que el comportamiento teórico de la resonancia E1 del

1



2 RESUMEN

Si como función de la cobertura de H concuerda con el comportamiento experimental. Se

concluye que la presencia de campos eléctricos dc superficiales, cuya magnitud depende de

la cobertura de B y H, juega un papel importante en la generación de segundo armónico.



Abstract

First, we obtain linear and non-linear optical spectra of clean Si(100)2× 1 reconstructed

surfaces based on the model of polarizable bonds. The crystal is modeled as an array of

point-like polarizable dipoles where each dipole is considered to be at the middle of every

Si-Si bond. The model incorporates the reconstruction of the surface trough the local

field effect. We calculate the optical spectra as a function of dimer buckling and it is

shown that the structure which nicely reproduce the experimental reflectance anisotropy

and second harmonic generation (SHG) spectra is that with a buckling of 0.6 Å. We also

discussed the features in the spectra for the c(4× 2) Si(100) surface.

On the other hand, we apply a microscopic formalism to calculate the different contri-

butions to the nonlinear second-order susceptibility required in the calculation of SHG.

These terms are classified according to 1ω and 2ω transitions and to the surface or

bulk character of the states among which the transitions take place. As an example,

we analyze the effects of these microscopic susceptibilities on the SHG spectrum of a

clean Si(100)c(4 × 2) surface. Three resonances seen experimentally in SHG are ana-

lyzed through this approach. They are the E1 resonance of bulk Si at 2ω ∼ 3.3 eV and

two other at 2ω ∼ 2.2 and 3 eV. The physical nature of the microscopic susceptibilities

calculated with our formalism allow us to understand the origin of these surface SHG

resonances.

Finally, through the above microscopic formalism we calculate the second harmonic

spectra of Si(100) in the presence of surface localized dc-electric field. It is found that

the surface-allowed E1 resonances for clean and H-covered surfaces shift as a function of

the dc field in agreement with experiment. This suggests the presence of built-in electric

fields strongly localized in the subsurface region and whose strength depends on the B

and H coverage.
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Chapter 1

Introduction

“We have called it the Transistor, because it is a resistor or semiconductor device which

can amplify electrical signals as they are transferred through it.” These were the words of

Ralph Bown announcing the new invention of the transistor on 1948 at a press conference

held in the Bell Labs headquarters [1, 2]. Its inventors Shockley, Bardeen and Brattain

marked the birth of a new era, i.e. the information age. Hardly an electronic equipment

can be made today without such a device. At that time a supercomputer was as big

as the size of a laboratory room and since then, the transistor has made possible to

built compact electronic computers and other devices with size moving from microscopic

circuits to impressive dimensions comparable to interatomic distances [3]. Nowadays,

millions of transistors can be built on a square of silicon -the base material for building

an integrated circuit- about the size of a fingernail.∗

The good performance in making devices of such interatomic dimensions requires the

preparation of clean† or adsorbed covered surfaces. The proper order or arrangement of

atoms on the used surface is essential since the feasibility or quality of the surface for its

well functioning depends on it. The most popular ways to obtain clean surfaces are [5]:

∗Most electronic devices are built on microscopic circuits engraved on silicon chips. However many
silicon-dominated circuits require considerable admixture of gallium arsenide components. The advan-
tages of the gallium arsenide [4] lie in the speed with which electrons move through it, in weak signal
generation operations and in the generation and detection of light. These advantages suit it for roles
in computing, television reception and the optoelectronic transmission of data through optical-fiber
networks.
†The word clean is connected with the limit of detection. For surface crystallographic studies 1% of

a monolayer (ML) or less often can not be detected. On the other hand such level of impurities might
be easily detectable if the surface electrical properties of semiconductors are studied [5].

5



6 Chapter 1. Introduction

a) cleaving, which is restricted to certain orientations of the selected group of crystals

that cleave easily or b) noble gas ion sputtering and annealing after orienting, cutting

and polishing the crystal outside the ultra-high vacuum (UHV) chamber. The latter

method is the most viable. In this method, gas ions are produced by electron impact

and accelerated towards the sample then, the surface impurities and first few layers of

the underlying material can be removed. After the bombardment, careful annealing of

the sample results in recrystallization of the surface.

In the process of manufacture of electronic devices the following question arises: How

can we control the quality of surfaces that build up the device? Here is where Surface

Science plays an important role since reliable characterization of surfaces and interfaces

is needed for the development and manufacture of such devices.

Many tools for surface analysis have been developed, among others we have syn-

chrotron radiation which is used for surface experiments where high intensity electro-

magnetic radiation to analyze surfaces is needed. This radiation is useful, for instance,

for photoelectron spectroscopy and reflectivity measurements in the ultraviolet region.

The low energy electron diffraction (LEED) method is used for determining surface struc-

tures. Low energy electrons have a wavelength comparable with the internuclear spacings

of the atoms in a crystal, e.g ≈1 Å for an energy of ≈150 eV. Electrons with this energy

penetrate only a few atomic layers due to the strong interaction with the solid so that

only the outermost surface layers can be probed. Photoelectron or photoemission spec-

troscopy is a technique that is based on the photoelectric effect. The crystal is irradiated

and photoelectrons are emitted from the filled valence bands just below the Fermi level

with different kinetic energies. By means of a retarding potential the number of electrons

with kinetics energies greater than a fixed energy can be determined. If the experiments

are performed in the ultraviolet spectral region, then the technique is called ultraviolet

photoemission spectroscopy (UPS) or if soft-x rays are used we then call it x-ray pho-

toemission spectroscopy (XPS). Auger electron spectroscopy (AES) is used to probe for

impurities. In this technique an electron (auger electron) is emitted after deexcitation

of the atom once it has been bombarded with energetic electrons or photons. The emit-

ted electron has a characteristic kinetic energy determined by the quantum states of the

atom.

Besides the techniques mentioned above, we have the optical techniques, which un-

like others, they do not require UHV environments and also they are non-invasive, non-

destructive, and have wide spectral coverage as well. These techniques do not have enough
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surface sensitivity unless the signal contributed by the bulk media can be suppressed. In

particular in this thesis, we will apply two optical techniques to study surfaces: the re-

flectance anisotropy spectroscopy (RAS) and mainly second harmonic generation (SHG).

RAS is a linear optical technique that is used to characterize structural and electronic

properties of semiconductor surfaces [6–12]. The RAS measures changes in reflectance

as a function of light polarization and is defined as the ratio

∆R

R0

=
∆Ry −∆Rx

R0

. (1.1)

where ∆Ry (∆Rx) is the reflectance of light polarized in the y (x) direction and R0 is

the Fresnel reflection coefficient.

The RAS technique is based on measuring differential reflectivities and used as a

surface probe when a medium is optically isotropic in the bulk (e.g. a cubic crystal)

but the surface is anisotropic. The symmetry of the medium causes the signal from the

bulk to cancel, which in turn makes the RAS a highly sensitive surface probe. Several

phenomenological and microscopic theoretical methods have attempted to explain the

observed RAS experimental spectra of surfaces and interfaces. The phenomenological

models to describe differential reflectivities range from the three layer model of McIntyre

and Aspnes [13], where the dielectric tensor of the crystal-vacuum interface was modeled

by isotropic three-layer model, the discrete dipole models of Mochán and Barrera [6],

Mendoza and Mochán [8], Hogan and Patterson [10], Wijers and Boeij [7] where local field

effects are taken into account, to the more recent microscopic formulations of Mendoza

et al. [9], Palummo et al. [11], and Rohlfing and Louie [12].

On the other hand, the optical technique of SHG has been used recently thanks

to the invention of the laser. SHG is a second-order non-linear process first observed

by Franken et al. [14]. They observed the second harmonic (SH) ultraviolet light at

∼ 3472 Å produced by propagating a ruby laser beam at 6944 Å through a quartz crystal.

Later Terhune et al. observed the SH generation of light in a medium with inversion

symmetry [15].

The SHG technique arises because a second-order process is forbidden, within the

dipole approximation, in a medium with inversion symmetry, i.e. centrosymmetric

medium [16]. Such a symmetry will necessarily be broken at an interface, for instance

the discontinuity of the interface (i.e. the structural change in passing from the bulk
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to the surface layer) is sufficient to break such a symmetry, and thus the second-order

non-linear process is therefore allowed at the surface.

Consider the following electromagnetic optical wave

~E(~r, t) ∼ ~E(~r)e−iωt, (1.2)

oscillating at frequency ω impinging on a medium. The total polarization induced by

this wave is given by

~P (~r, t) =
↔
α · ~E(~r, t) +

↔
χ : ~E(~r, t) ~E(~r, t) + · · ·

=
↔
α · ~E(~r)e−iωt +

↔
χ : ~E(~r) ~E(~r)e−i2ωt + · · · , (1.3)

where the first and second terms on the right hand side give the response at ω and 2ω,

respectively. After a proper Fourier transformation, we obtain

~P (ω) =
↔
α(ω) · ~E(ω) (1.4)

the linear polarization proportional to the incoming field with
↔
α(ω) the linear polariz-

ability tensor and
~P (~r, 2ω) =

↔
χ(2ω) : ~E(~r, ω) ~E(~r, ω) (1.5)

is the second-order non-linear polarization proportional to the squared of the incoming

field and is the source of the SH generation. The third rank tensor
↔
χ(2ω) is the second-

order non-linear susceptibility, which characterizes the SH response of the medium. A

typical sketch for SHG is shown in Fig. 1.1.

For a medium with inversion symmetry (e.g. a cubic crystal), the operation (~r → −~r)
must leave the system invariant. Using the fact that both ~P and ~E are polar vectors and

that
↔
χ is invariant, from Eq. (1.5) we have that,

~P (−~r, 2ω) =
↔
χ(2ω) ~E(−~r, ω) ~E(−~r, ω)

−~P (~r, 2ω) =
↔
χ(2ω)(− ~E(~r, ω))(− ~E(~r, ω))

~P (~r, 2ω) = −
↔
χ(2ω) ~E(~r, ω) ~E(~r, ω). (1.6)
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in θθ

SURFACE

out

E E (2ω)(ω)

Figure 1.1: Sketch of the second harmonic generation technique. An incident electric field
oscillating at the fundamental frequency ω induces a second-order non-linear optical response
of the surface, thus observing in reflection a harmonic wave at 2ω.

Comparing Eq. (1.6) with Eq. (1.5) we obtain

↔
χ = 0 ⇔ inversion symmetry (1.7)

indicating that SHG is forbidden for centrosymmetric media. At an interface between two

media where the inversion symmetry is necessarily broken, the SHG is allowed, making

this technique a highly surface specific probe to analyze surfaces and interfaces.

We define the SHG efficiency as

R(ω) =
I(2ω)

I2(ω)
(1.8)

where the intensity I(ω) = (c/8π)|E(ω)|2, then

R(ω) =
8π

c

|E(2ω)|2

|E(ω)|4
, (1.9)

with c the speed of light. To make a simple estimate of the order of magnitud of R
we proceed as follows. The fact that

↔
χ is different from zero only near the surface or

interface of the system, allow us to make the simplifying approximation that the non-

linear polarization given by Eq. (1.5) is localized within a sheet of infinitesimal width.

This surface polarization P is of the order of the width of the sheet times P (2ω). We

take this width to be of the order of an atomic distance, i.e. the Bohr radius aB. On

the other hand, the field radiated by such (non-linear) polarization sheet is of the order

of P/λ with λ the wavelength of the radiated field, i.e. E(2ω) ∼ P/λ ∼ aBP/λ. From
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Eq. (1.5), we notice that the units of
↔
χ are those of inverse electric field (recall that ~P

is polarization per unit volume), where the electric field is estimated to be of the order

of e/a2B, with e the electron charge. Putting everything together into Eq. (1.9) we get

R(ω) ∼ 1

c

(
aBP

λ

)2
1

E4(ω)
∼ 1

c

(
aBχE

2(ω)

λ

)2
1

E4(ω)
∼ 1

c

(aBχ
λ

)2
∼ 1

c

(
a3B
eλ

)2

∼ 10−21 cm2/W (forλ ∼ visible). (1.10)

Due to the generality of this argument, this estimate can be used not only for semicon-

ductors but also for metals, for which we expect a similar order of magnitud. However,

the non-linear reflectance may still be increased in regions of resonance and suppressed

in regions of transparency. The estimation of Eq. (1.10) also shows that very powerful

lasers are needed to observe SHG.

Notice that, the non-linear susceptibility
↔
χ(2ω) directly reflects the structural sym-

metry of the surface or interface and gives us information from the surface electronic and

vibrational transitions [17]. The origin of the surface SHG arises from two sources [16,18]:

a) structural discontinuity as changes in the atomic positions, symmetry, electron density,

as well as the presence of adsorbates at the surface and b) field discontinuity or variation

of the field across the interface. The former dominates at a semiconductor surface with

dangling bonds‡ or where a monolayer (ML) § of molecules is adsorbed with a preferred

orientation at an interface [19]. On the other hand, field discontinuity dominates on a

liquid or glass surface, where the surface structure is not different from that in the bulk.

Based on the origin of the SHG, we can define an interface layer as the region where both

the structure and the field change significantly [18]. If the thickness of an interface layer

is much smaller than the optical wavelength the long wavelength approximation can be

assumed.

When higher-order effects are taken into account, the effective non-linear polariza-

tion ~Peff (2ω) generally should consists of a series of multipoles terms, which for a non-

magnetic medium is written as

~Peff (2ω) = ~P (2ω)−∇ ·
↔
Q(2ω), (1.11)

‡A dangling bond is an orbital of a surface atom of a crystal that is directed outward from the surface
and is unbounded [5].
§One monolayer of coverage in a surface is approximately ∼1014 particles/cm2 [5].
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where ~P (2ω) is the electric-dipole polarization and
↔
Q is the electric-quadrupolar polariza-

tion. The terms in Eq. (1.11) are quadratic functions of the field and/or their derivatives.

Up to the first derivatives of the field these terms are written as [20]

~P (2ω) =
↔
χ : ~E(ω) ~E(ω) +

↔
χ
(Q)

P : ~E(ω)∇ ~E(ω) (1.12)
↔
Q(2ω) =

↔
χ
(Q)

Q : ~E(ω) ~E(ω), (1.13)

where
↔
χ(Q) is a fourth rank tensor that describes the electric quadrupolar contributions.

Defining a general susceptibility
↔
χ(Q) as

↔
χ(Q)(2ω) =

↔
χ(Q)
P (2ω)− 2

↔
χ(Q)
Q (2ω), (1.14)

then the effective surface polarization can be written as

~Peff (2ω) =
↔
χ : ~E(ω) ~E(ω) +

↔
χ(Q) : ~E(ω)∇ ~E(ω)− (∇

↔
χ(Q)) : ~E(ω) ~E(ω). (1.15)

The first term is the electric dipole contribution and the others are electric quadrupolar

contributions. The second term is related to the field gradient across the interface; the

third term is zero in the bulk of a homogeneous medium, but has a non-zero value at the

surface due to structural discontinuity [21]. Note that the first two terms in Eq. (1.15)

depend on the electric field or its variation in the surface region whereas the third term,

although originating from the surface, only depends on bulk parameters [20].

On the other hand, the bulk contribution to surface SHG from a centrosymmetric

medium should also be added [20], i.e. the non-vanishing electric quadrupolar bulk

contribution to the non-linear polarization, which is related to the small but finite field

gradient within a homogeneous system (second term of Eq. (1.15), since the others

are identically zero in the bulk). Then the non-zero contribution from the bulk to the

second-order polarization is

~Pb =
↔
χ(Q) : ~E(ω)∇ ~E(ω). (1.16)

Measurements of SHG from the interface allows us to deduce the surface non-linear

susceptibility. In such measurements the bulk may contribute to the signal at most to

the same order of magnitud and may complicate the experiment since the detector collects

the total SHG signal contributed by both the surface and the bulk [22]. However, in media

with large dielectric constant such as metals and semiconductors, the contribution from
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the bulk is much weaker [18]. For some surfaces, the bulk contribution is at least an order

of magnitud smaller than the surface term, and can be safely neglected [8, 18,21,23,24].

The first experimental method used to detect SHG from semiconductors and metals

was that of Bloembergen and coworkers [25]. They presented experimental results on the

polarization and directional dependence of SHG of Si, Ge and Ag. Heinz et al. [19] made

measurements of optical SHG spectra of adsorbates at submonolayers coverages. They

obtained the position and the lineshape of the electronic transition for rhodamine-dye

molecules adsorbed onto a fused silica. More recently, we can found in the literature

experimental studies on SHG as a selective tool to probe excitons on NiO and CuCl

surfaces [26] or for magnetized surfaces [27]. For semiconductors, the technique of SHG

has been applied to the Si surface. For instance, we find experiments on the clean or

oxide surface [21, 28–30], on the clean or H-adsorbed surface [31–33] and the B-doped

surface [34].

On the theoretical side, different approaches for studying SHG at surfaces have been

developed [8,24,35–47]. We find in the literature the early theoretical work of transmitted

and reflected SHG of light waves at the boundary of non-linear media of Bloembergen

and Pershan [35]. Rudnick and Stern [48] made a theoretical scheme for the calculation

of the microscopic susceptibility components for a flat metallic surface with some lim-

itations. Aksipetrov et al. [36] carried out an analysis of SHG in crystals showing the

possibility of separating out the non-linear optical contribution from the layer near the

surface. Later, Sipe et al. [37] developed a phenomenological analysis of the surface and

bulk susceptibility tensors, identifying their independent components, and the possible

functional dependence of the second-order reflectance on the incidence and azimuthal

angles for different crystal surfaces. However, they did not attempt actual calculations of

the susceptibility tensor. Mizrahi and Sipe [38] applied a Green method to calculate the

essential measurable parameters of SHG at surfaces, in terms of the surface non-linear

susceptibility. Models for the calculation of the non-linear susceptibility can be classified

according to phenomenological and microscopic models. In the first class, one approxi-

mates the susceptibility with simple expressions, usually those of a harmonic oscillators

and adjust, somehow, this expression to, usually, linear optical data. The second class

uses a quantum mechanical expressions for the non-linear susceptibility and evaluates

them according to semi-empirical tight-binding (SETB) and ab initio methods. Both

approaches have been applied to semiconducting and metallic surfaces.

For metallic surfaces employing hydrodynamic phenomenological models see Refs.
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49–56. For instance, Mochán and Mendoza use a phenomenological model which ac-

counts for local-field effects to calculate SHG for Ag [40]. Maytorena et al. [53] uses the

hydrodynamic model to study metallic surfaces [53–55]. They calculate SHG of semi-

infinite metals taking into account the presence of a continuos electronic density profile at

their surface [53]. They extend this model for the non-linear response of a conductor with

a continuos electron density profile taking into account non-local effects [56]. Besides,

within the hydrodynamic model, Maytorena et al. [56] developed a model to calculate

the optical sum (SFG) and difference (DFG) frequency generation spectra at the surface

of isotropic centrosymmetric conductors. They follow two approaches. One of them,

consists of a semi-infinite free electron gas (jellium model) with a continuously varying

electronic density profile. The other consists of a continuos distribution of polarizable

entities (dipolium model) that respond non-linearly to the gradient of the field. Later

Mendoza et al. [57] combine these approaches, the jellium model and the dipolium model,

to calculate SFG/DFG at the interface of an isotropic centrosymmetric metal covered by

a non-centrosymmetric adsorbate. Microscopic models to study the non-linear optical

response, for simple metals, we find self consistent calculations employing the time de-

pendent local density approximation (TDLDA) applied to the jellium model [52,58–62].

For SHG at semiconductors surfaces employing phenomenological models we find, for

example, the model of Schaich and Mendoza [39] where local field effects are taking into

account. Here the system is considered to be composed of polarizable entities. With

this approach, Mendoza and Mochán [24] gave simple analytical expressions modeling

a centrosymmetric semi-infinite system by a homogeneous distribution of dipoles that

respond harmonically to the perturbing field. Also, this approach was applied to Si

surfaces by considering the crystal made up of a pointlike polarizable bonds [8, 24, 63].

On the other hand, within the microscopic models for SHG at semiconductors surfaces

we can find for example the followings approaches: Levine [64] set down formulas for

the second-order non-linear longitudinal response in semiconductors in a one electron,

self consistent-field formalism. Sipe and Gharamani [65] presented a formalism for the

calculation of the non-linear optical response of semiconductors within the independent-

particle approximation. They presented the contribution to the non-linear susceptibility

for CdTe from a full band structure. Gavrilenko and Rebentrost used the SETB method

with a sp3s∗ basis to calculate the χzzz component [43, 44] of Si surfaces. Cini proposed

a microscopic formalism for SHG [66]. He found closed expressions for the SH intensity.

The theory allows to study SHG as a function of substrate band structure and plasma

frequency, overlayer chemical properties and experimental geometry. Such a model has
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been successfully applied in the microscopic calculations for semiconductors of Refs. 42

and 45. More recently Gavrilenko et al. [46] and Mendoza et al. [47] reported results from

ab initio theory and modified SETB method for SHG of the Si(100) surface. Gavrilenko

et al. [46] quantitatively studied the non-linear response of Si(100) to H and Ge adatoms

at Si(100)2×1 surfaces whereas Mendoza et al. studied Si(100)c(4×2) surfaces with H

adsorption [47].

Because the technological importance of Si, the optical techniques described above,

RAS [67, 68] and SHG [29, 31, 32, 34, 69], have been applied extensively to study differ-

ent aspects of the Si(100) and Si(111) surfaces with different reconstructions¶, ad-atom

coverage, etc. [21, 23, 31, 32, 69–73]. Most of the studies have dealt with the (100) sur-

face because most electronic devices are formed on this surface. The interest has been

focused on understanding the basic physical properties of the clean surface, its growth,

the process of adsorption of foreign atoms, etc. showing how this particular spectroscopy

(SHG) is becoming a reliable surface tool.

1.1 Scope of this thesis

In this thesis, we theoretically study the optical properties of surfaces through the optical

techniques of RAS and SHG. Being the silicon surface the most used in technology, we

study, on one side, the clean Si(100) recontructed surface and on the other side, the clean

and H-adsorbed and B-doped Si(100) reconstructed surface. The thesis is organized as

follows: First, in Chap. 2, we give the basic background to calculate the optical spectra of

RAS and SHG. Then in Chap. 3, we describe the method to calculate both RAS and SHG

spectra based on the discrete dipole model. This model is applied to calculate the optical

spectra of fully relaxed (i.e. reconstructed) Si(100) surfaces in which the polarizable

entities replace each Si-Si bond. In order to understand the origin of the SHG structures

seen in the spectrum, in Chap. 4, we develop a method to systematically investigate

the different contributions to the observed peaks in SHG at surfaces. In particular, the

clean Si(100)c(4× 2) surface spectrum is analyzed through this method. We then use in

Chap. 5 a microscopic formalism to calculate the SH spectra of adsorbed-covered and

doped Si(100) surface. The charge transfer that arises as the surface reconstructs in the

presence adsorbates generates a surface localized dc-electric field in the subsurface region.

¶The rearrangement of the atoms on a surface lowering the translational symmetry of the surface
layers is called surface reconstruction.



1.1. Scope of this thesis 15

We include such a dc-electric field in the calculations for SHG with adsorption of H and

incorporation of B on the Si(100) surface. We finally summarize the main results of this

thesis and give conclusions in Chap. 6.
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Chapter 2

RAS and SHG at surfaces

2.1 Introduction

The interaction of an electromagnetic field of optical frequency ω, with a medium can

be described by the induced polarization ~P (ω) which contains harmonics (see Eq. (1.3)).

This polarization is the source of the optical response of the medium, i.e. it generates

new electromagnetic waves at the harmonic frequencies ω, 2ω, 3ω, · · · . The polarization

can be written as an expansion of the electric field in the form∗

~P (ω) =
↔
α(ω) · ~E(ω) +

↔
χ(ω) : ~E ~E + · · · (2.1)

where
↔
α(ω) is the linear polarizability which is related to the dielectric function ε(ω)

through the equation
↔
ε (ω) = 1 + 4π

↔
α(ω). (2.2)

The terms proportional to higher orders on the field, in Eq. (2.1), describe the non-linear

response. The tensor
↔
χ(ω) is the second-order non-linear susceptibility responsible for

the following processes: second harmonic generation (SHG), sum frequency generation

(SFG), difference frequency generation (DFG), optical rectification and the Pockels effect

∗The standard notation of the polarization written as an expansion of the electric field is

~P (ω) =
↔
χ(1)(ω) · ~E(ω) +

↔
χ(2)(ω) : ~E ~E + · · ·

Throughout this thesis, we use
↔
α instead of

↔
χ(1) and

↔
χ instead of

↔
χ(2).

17
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[74].

The expansion of the polarization into powers of ~E is valid as long as the condition

E/Eat << 1 holds, with Eat the atomic electric field. Typically Eat ∼ 3× 108 V/cm. A

laser beam of 1 kW/cm2 of power produces an electric field ∼ 106 V/cm then we have

E/Eat ≈ 10−2. It means that the non-linear polarization is much weaker than the linear

polarization [74]. This suggests that the observation of SHG requires high-intensity laser

beams.

The linear and non-linear susceptibilities characterize the optical properties of media

and are properly determined with a full quantum-mechanical calculation, however, simple

phenomenological models help to get an insight of the origin of the optical response.

Describing the physical properties of a crystalline medium one encounters with symmetry

relations that the susceptibilities must satisfy. Since in this thesis, we study Si surfaces, in

the next section, we go through the symmetry relations that the second-order non-linear

susceptibility must hold for a centrosymmetric medium.

2.2 Symmetry of
↔
χ

The polarization of a crystal depends on the direction in which the external field ~E is

applied. If ~E is applied in a certain direction in a crystal there will be a component of

the polarization in that direction and also there may be components of the polarization

in the direction perpendicular to ~E. The existence of these perpendicular components

depends on the symmetry of the crystal. Such a symmetry information is described by

the susceptibilities tensors of the medium [5]. The Neumann’s principle is then used to

find the relationship of the different susceptibility components of the crystal.

The Neumann’s principle states that any macroscopic physical property of a crystal

has at least the symmetry of the point group of the space group. Restating this principle

in the language of symmetry: any macroscopic physical property of a crystal, that is each

component of the susceptibility tensor, transforms into +1 times itself under a symmetry

operation of the point group of the crystal [5].

Consider the expression for the second-order sum frequency polarization
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Face χijk

(100) χzzz, χzzx = χzzy, χzxx = χzyy
(110) χzzz, χzzx, χzzy, χzxx, χzyy
(111) χzzz, χzzx = χzzy, χzxx = χzyy, χxxx = −χxyy = −χyyx

Table 2.1: Independent components of the second-order susceptibility of the Si surface for its
different faces.

Pi(ω = ω1 + ω2) = χijkEj(ω1)Ek(ω2), (2.3)

each component of the susceptibility tensor
↔
χ has to be invariant under any symmetry

operation of the point group. This may reduce the number of independent and non-zero

components. For instance, a general third rank tensor
↔
χ in Eq. (2.3) has in principle 27

components. However for SHG (ω1 = ω2), the order of the last two indices, in Eq. (2.3),

is arbitrary, i.e.

χijk = χikj (2.4)

reducing the number of independent components to 18. This number might be reduced

further by the point group symmetry. For instance, Table 2.1 shows the independent

components of the Si surface for its different faces. For the diamond structure we may

obtain other non-zero components of
↔
χ since the microscopic symmetry of a face may

be less than the macroscopic symmetry. For example, the (001) face has on the average

the same symmetry as a square which yields the non-zero components shown in Table

2.1. However, if we look at a microscopic region, the displacement between the first

and second crystalline planes might have a component along a square diagonal, say the

[110] direction, which would therefore be inequivalent to the second diagonal in the [11̄0]

direction. This allows a non-zero value for χzxy. Nevertheless, any surface has steps so

that on other microscopic regions the roles of the [110] and [11̄0] directions are reversed

and so is the sign of χzxy. Only after averaging over both kinds of regions, i.e. over the

macroscopic region being illuminated by the beam, that the contribution to the surface

polarization coming from χzxy cancels out, regaining the full symmetry of the square [8]

as if χzxy = 0.
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2.3 Reflectance anisotropy spectroscopy (RAS)

The technique of of Differential reflectance spectroscopy (DRS) is very useful to inves-

tigate the optical properties of surfaces. The technique is based on measuring surface

reflectivity changes. The first work in this direction is that of McIntyre and Aspnes [13].

They proposed a three layer model to find expressions for the reflection coefficient of a

semi-infinite crystal taking into account the surface contribution. The relative deviation

(∆Rs/Rs) from Fresnel formulas [75] of reflection according to McIntyre and Aspnes is

given by
∆Rs

Rs

=
4ωd

c
cosθ=m

(
εs − εb
εb − 1

)
(2.5)

for light polarized perpendicular to the plane of incidence (s-polarized light). Here ∆Rs =

Rs−R0 is the difference between the reflection coefficient of the surface with the Fresnel

reflection coefficient R0, ω is the frequency, c the velocity of light, d is the layer thickness

of the surface, θ is the angle of incidence and εs (εb) is the complex dielectric constant of

the surface (bulk) which depends on frequency. For light polarized within the plane of

incidence (p-polarized light) we have

∆Rp

Rp

=
4ωd

c
cosθ=m

{
(εb − sin2θ)(εs − εb) + ε2sin2θ(ε−1s − ε−1b )

(εb − 1)(εbcos2θ − sin2θ)

}
(2.6)

At normal incidence Eqs. (2.5) and (2.6) reduce to

∆R

R
=

4ωd

c
=m

(
εs − εb
εb − 1

)
(2.7)

The above equations for ∆R/R are valid as long as ωd/c << 1, which holds for visible

light.

An alternative approach to study surface optical properties of solids, is the reflectance

anisotropy spectroscopy (RAS). This technique is based on DRS and is used to probe

structural anisotropies on surfaces. Del Sole, based on a microscopic model, found ex-

pressions for the reflection coefficients where the anisotropy of the crystal was taken into

account [76]. His result for the reflection coefficient of normally incident light in the α

direction is

∆Rα

R0

=
4ωd

c
=m

(
∆εαα
εb − 1

)
(2.8)
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where ∆εαα is a small perturbation to the microscopic dielectric function εαβ(z, z′;ω) of

the vacuum-crystal surface which is given by

∆εαα(ω) =

∫ ∫
dzdz′[εαα(z, z′;ω)− δ(z − z′)] (2.9)

−
∫

dz

∫
dz′
∫

dz′′
∫

dz′′′εαz(z, z
′;ω)ε−1zz (z′, z′′;ω)εzα(z′′, z′′′;ω).

where δ(z−z′) is the delta de Dirac and the integrals are evaluated from −∞ to∞. The

reflection coefficient, Eq. (2.8), may take excitonic and local field effects into account,

provided the macroscopic dielectric tensor defined in Ref. 77 for a semi-infinite crystal

is used.

We define the RAS parameter as the difference between the ratios ∆Ry/R0 and

∆Rx/R0 of equation (2.8), i.e.

RAS =
∆Ry −∆Rx

R0

=
4ωd

c
=m

(
∆εyy −∆εxx

εb − 1

)
. (2.10)

Therefore, RAS measures changes in reflectance as a function of light polarized along

two orthogonal directions in the surface plane.

On the other hand, Mochán and Barrera developed a simple model of polarizable

entities for RAS [6], which is complementary to the microscopic model of Del Sole [77].

The model of plarizable entities, takes the local field effect into account, through the

polarization near the surface and in the bulk. Mochán and Barrera found the following

expression for RAS

RAS = −4a
ω

c
<e(i[Px − Py]), (2.11)

with

Px,y =
∑
n≥0

(
P
(n)
x,y(ω)

Px,y(B,ω)
− 1

)
, (2.12)

where P
(n)
i is the dipole moment per unit volume along the i-direction of any dipole in

the nth plane, Pi(B,ω) is the bulk polarization along the i-direction and a is the distance
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between crystal planes. In this thesis we use Eq. (2.11) to calculate RAS.

2.4 Second harmonic generation (SHG)

The surface SHG is an electromagnetic phenomenon governed by Maxwell’s equations.

The source of the output radiation at frequency 2ω is the surface polarization, Eq. (1.5),

induced by the incoming field ~E at the surface. Solution of the Maxwell’s equations with

the second-order non-linear polarization as the source term yields a second harmonic

(SH) intensity I(2ω) in the reflected direction through which we define the SH generation

efficiency as the ratio of the reflected intensity at the harmonic frequency to the square

intensity at the fundamental frequency

R(ω) =
I(2ω)

I2(ω)
. (2.13)

This expression for R can be given in terms of the non-linear susceptibilities as [45]

R(ω) =
32π3

(n0e)2c3
ω2 tan2 θ|TP (2ω)T 2

i (ω)rPi|2, (2.14)

where i = s, p indicates the polarization of the input field at frequency ω. For the

combinations of input polarization, rPi is given by

rPp = sin2 θχ⊥⊥⊥ + (c/ω)2k2⊥(ω)χ⊥‖‖

−(c/ω)2k⊥(ω)k⊥(2ω)χ‖‖⊥, (2.15a)

rPs = χ⊥‖‖, (2.15b)

Here, θ is the angle of incidence, c the speed of light, n0 is the electron density of the sys-

tem, Ti is the transmission Fresnel factor for the i polarization and, k⊥ = (ω/c)[εb(ω)−
sin2 θ]1/2 with εb(ω) being the bulk dielectric function. The s-polarized SHG efficiency is

identically zero due to symmetry considerations. Equation (2.14) is strictly valid within

the dipole approximation. Nevertheless, even if quadrupolar corrections are considered,

the isotropic and anisotropic bulk quadrupole terms in R(ω) have shown to yield negli-

gible contributions as compared to the dipole terms [8, 24,33].
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Polarizable bond model

3.1 Introduction

A complete description of second-order non-linear effects at surfaces and interfaces

must certainly explain the origin of the non-linear response in terms of microscopic quan-

tities. A simple model that gives an explicit account of the microscopic crystalline effects

is that which is based on treating the material as an ordered array of point-like, polar-

izable entities, which is referred to discrete dipole model [6, 8, 24, 39, 78]. In an external

field each entity develops various multipoles moments which, in turn, produce fields that

influence its neighbors. The self-consistent solution for the net polarization of the sys-

tem allows one to calculate the various parameters introduced by the phenomenological

theory. Within the discrete dipole model the geometrical arrangement of the atoms at

the surface is incorporated through the surface local field effect (i.e. the change in the

local field near the surface).

The polarization induced in a semiconductor originates from the displacement of its

charge distribution. This charge distribution typically has a strong maxima at the middle

of each bond for mono-atomic semiconductors with the exception of diamond, which has

a bimodal distribution [74]. Thus, the polarizable bond model is based on treating the

semiconductor as that of a lattice of point-like polarizable bonds. The model was used

previously by Mochán and Barrera [6,78] for the linear response of clean and Br-adsorbed

Ge surface where they show that the local field effect induces a change in the macroscopic

dielectric response of cubic crystals near their surface. This change depends on the

23
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orientation of the surface and of the plane of incidence, so that the optical properties

such as reflectance, ellipsometric coefficients and surface-plasmon-polariton propagation

also depend on orientation of the surface. On the other hand, Schaich and Mendoza [39]

developed a model for surface second harmonic generation (SHG) consisting of a semi-

infinite system made up of a continuos distribution of polarizable entities. The model

was developed for the unreconstructed silicon surface by Mendoza and Mochán [8,24] and

in the following that theory is applied to analyze 2×1 and c(4×2) reconstructed Si(100)

surfaces. Part of this work is reported in Ref. 79.

We expect the local field to have large consequences in SHG through the following

mechanism: Consider a localized polarizable entity and a semi-infinite crystal made up

of its replicas. If each entity is centrosymmetric it would have no electric-dipole-allowed

second harmonic (SH) transition, though it may have electric-quadrupolar and magnetic-

dipolar contributions proportional to ~E∇~E where Ei is the local field acting at site i. The

external field has a very slow spatial variation whose scale is of the order of the wavelength

λ, although the field induced by a nearby entity j may have a very large variation, with

a scale determined by the distance from j to i, rij, which is of atomic dimensions a.

Different neighbors contribute to the gradient ∇~E along different directions, so that, if

the site i is itself centrosymmetric, these large gradients will cancel out among themselves,

leaving only a small residual gradient of the order E/λ. This cancellation is no longer

possible at the surface, where |∇E| ≈ E/a, yielding a large SH surface polarization. When

written in terms of the microscopic field ~E this surface polarization is then proportional

to ~E ~E/a, which corresponds to a large surface allowed dipolar SH process.

The chapter is organized as follows: in Secs. 3.2-3.7 we give expressions for the non-

linear susceptibilities of each bond in terms of its linear polarizabilities. Then, in Secs. 3.4

and 3.5, we set up the linear and non-linear equations used to calculate the polarization

of the crystal and finally in Sec. 3.6 we present reflectance anisotropy (RAS) and SHG

spectra calculations for the Si(100) reconstructed surface and compare with available

experimental spectra.

3.2 Microscopic linear polarizability

The polarizable bond model treats the crystal as an array of point-like dipoles. Then,

we first treat an individual dipole (a single bond). We consider every dipole to be an
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anisotropic point-like harmonic oscillator of cylindrical symmetry, with charge e and

mass m. The x coordinate axis is chosen to be along the symmetry axis and the y, z

axes perpendicular to it. We denote the resonant frequencies of the dipole by ωx = ω‖

corresponding to the response parallel and by ωy = ωz = ω⊥ corresponding to the

response perpendicular to the bond.

The first order induced dipole moment is written as [39]

~p(ω) =
↔
α (ω) · ~E , (3.1)

where ~E is the local field and the linear microscopic polarizability
↔
α (ω) tensor is given

by

αij(ω) =

 α‖(ω) 0 0

0 α⊥(ω) 0

0 0 α⊥(ω)

 . (3.2)

To emphasize the dependence on each bond’s orientation the following notation has been

used: αxx → α‖ and αyy = αzz → α⊥ for its response parallel and perpendicular to the

bond respectively and

αi(ω) =
e2/m

ω2
i − ω2

, (3.3)

with i =‖ or ⊥. The cylindrical symmetry allows the polarizability to be written in the

crystal coordinate system as

↔
α = α‖ê

λêλ + α⊥(
↔
1 − eλeλ), (3.4)

where
↔
1 is the unitary tensor and êλ is the unitary vector along the direction of the

λ bond. The microscopic polarizability of each dipole, indeed, depends on its position

through its particular bond orientation and its surface or bulk location.

3.3 Microscopic non-linear susceptibilities

Once we have defined in Sec. 3.2, the linear polarizability that describe the linear response

of a polarizable entity, we go on describing the non-linear susceptibilities that describe
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the second order response. The second-order induced dipole moment is given by [8, 39]

(~pnλ(2ω))i = [χ
(d)
ijkl(ω) + χ

(m)
ijkl(ω)]Ej(∇kEl), (3.5)

with∗

χ
(d)
ijkl(ω) =

1

2e
[αil(2ω)αjk(ω) + αik(2ω)αjl(ω)], (3.6)

χ
(m)
ijkl(ω) =

3

2e
[αil(2ω)αjk(ω)− αik(2ω)αjl(ω)]. (3.7)

Here
↔
χ(d) and

↔
χ(m) are the dipolar and magnetic originated contributions to the micro-

scopic second-order susceptibility of the dipole oscillator. Then, Eqs. (3.6) and (3.7) are

simple relations between the non-linear susceptibilities (dipolar and quadrupolar) with

the linear polarizability for harmonic oscillators [8,39]. Finally, the second-order induced

electric quadrupolar moment is

Qij(2ω) = χ
(Q)
ijkl(ω)EkEl, (3.8)

where χ
(Q)
ijkl(ω) is the quadrupolar susceptibility given by [8, 39]

χ
(Q)
ijkl(ω) =

1

2e
[αil(ω)αjk(ω) + αik(ω)αjl(ω)]. (3.9)

∗Eqs. (3.6)-(3.9) arise by obtaining the second-order change in the expectation value of the multipole

moments [39] for a harmonic oscillator with charge e < 0, mass m and frequency ω. The calculation

is based on a quantum mechanical scheme based on raising and lowering operators for the position

operator. Within the time dependent perturbation theory, the second-order response of an operator Ô

due to a perturbation Ĥ′ is given by

< δÔ(2)(2ω) >=

(
1

ih̄

)2 ∫ ∞
0

dτ1e
iωτ1

∫ ∞
τ1

dτ2e
iωτ2 < [[Ô, Ĥ′(−τ1)], Ĥ′(−τ2)] > .

Calculating the change in the electric-dipole moment p̂i (magnetic-dipole moment m̂i) with the pertur-
bations Ĥ′ ∼ −exjEj(L) and Ĥ′ ∼ −1/2exjxk(∂jEk)L (Ĥ′ ∼ −mjBj(L)), Eqs. (3.6) and (3.7) arise.

Whereas obtaining the change in the quadrupole moment Q̂ij with the perturbation Ĥ′ ∼ −exj ~Ej(L),
Eq. (3.9) arises. Here, x is the position operator, E(L) (Bj(L)) is the local electric (magnetic) field at
the site of the entity.
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Figure 3.1: We show the 2 × 1 reconstructed surface of clean Si(100). The arrows represent
the point-like dipoles that replace each Si-Si bond, where the dimer has a thicker line. The
bond-plane enumeration is also shown.

The microscopic susceptibilities
↔
α and χ(d),(m),(Q) of a single oscillator given by expressions

(3.2), (3.6), (3.7) and (3.9) respectively determine all the relevant response functions

within the long wavelength limit.

It can be seen also from these equations, that from the knowledge of the linear po-

larizabilities αi(ω) the non-linear susceptibilities, for a single dipole, can be obtained

(by substitution of Eq. (3.4) into Eqs. (3.6), (3.7) and (3.9)) and therefore, the total

microscopic non-linear behavior as well.

3.4 Linear local field equations

The total polarization of a medium to an external field would be the sum of the dipole

moments of each dipole that forms the system. Then we will set up the equations that

give the linear dipole moment of every polarizable entity of the medium, which in turn

give us the total linear response of the system. Then, the total induced linear dipole

moment of every dipole that is in a plane ` and that has an orientation λ (see. Fig. 3.1)

is given by Eq. (3.1) which is written in the form

~p`νλ(ω) =
↔
α
`νλ

(ω) ·

(
~E(ext)(~r`νλ, ω) +

∑
`′ν′λ′

↔
M `νλ`′ν′λ′ · ~p`′ν′λ′(ω)

)
(3.10)
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where ν numbers the individuals dipoles that make up the plane ` with the same orien-

tation λ. The term in parentheses in Eq. (3.10) is the local field ~E which is the sum of

the external field ~E(ext) plus the fields generated by the surroundings dipoles,
↔
M is the

dipolar interaction tensor between dipoles `νλ and `′ν ′λ′ given by

↔
M `νλ`′ν′λ′ = ∇∇ 1

|~r − ~r`′ν′λ′ |

∣∣∣∣
~r=~r`νλ

, (3.11)

where the gradient operator acts over ~r. The sum in Eq. (3.10) is over all dipoles

`′ν ′λ′ 6= `νλ and can be carried out by using a planewise summation [80].

In the long wavelength approximation the slow spatial variation of the external field

is neglected which allows to write ~E(ext)(~r`νλ, ω) → ~E(A, ω) with ~E(A, ω) the external

field independent of position. In such a case, all dipoles with the same orientation λ in

a particular plane would have the same dipole moment; this permit the ν index to be

dropped in the dipole moment expression, i.e. ~p`νλ → ~p`λ and the sum over ν ′ in Eq.

(3.10) is carried out as
↔
M`λ`′λ′=

∑
ν′

′ ↔
M `νλ`′ν′λ′ , (3.12)

where the prime on the sum indicates that the self interaction of a dipole should be

excluded, i.e. the term with ν = ν ′. Equation (3.12) represents the interaction between

a particular dipole `λ with all the dipoles with orientation λ′ that make up the plane

`′. Notice that the tensor
↔
M depends on the difference (~r`νλ − ~r`′ν′λ′), which means that

after summing over ν ′ the tensor
↔
M does not depend on ν [80].

The above considerations allow Eq. (3.10) to be rewritten in the form∑
`′λ′

[~1δ``′δλλ′ −
↔
α
`λ
·
↔
M`λ`′λ′ ] · ~p`′λ′(ω) =

↔
α
`λ

(ω) · ~E(A, ω). (3.13)

Expression (3.13) is a set of 3×λ×` equations to be solved for the linear dipole moments

of each dipole λ in the plane `. Then the total polarization is obtained by summing the

contributions of all dipoles as,

~p(ω) =
∑
`λ

~p`λ(ω), (3.14)

The dipole moment of each dipole in the bulk is independent of the plane `; in such
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a case ~p`λ → ~pλ(B,ω) and Eq. (3.13) is rewritten as∑
λ′

[~1δλλ′ −
↔
α
λ
·
↔
Uλλ′ ] · ~pλ′(B,ω) =

↔
α
λ
(ω) · ~E(A, ω). (3.15)

where the tensor
↔
Uλλ′ that describe the interaction between dipoles is given by

↔
Uλλ′=

∞∑
`′=−∞

↔
M`λ`′λ′ . (3.16)

Again, we notice that the tensor
↔
U does not depend on ` since the tensor

↔
M depends on

the difference of position between bonds `λ and `′λ′.

Therefore the total bulk polarization is given by

~P (B,ω) =
∑
λ

~pλ(B,ω). (3.17)

3.5 Nonlinear local field equations

We continue with the description of the non-linear response of a medium as in Sec. 3.4.

The total second-order dipole moment of every dipole `νλ is the sum of the second-order

non-linear response ~p`νλ(2ω) to the spatially varying local field plus the linear response

to the field at the harmonic frequency 2ω due to the oscillating quadrupoles

~p
(tot)
`νλ (2ω) = ~p`νλ(2ω) (3.18)

+
↔
α
`νλ

(2ω) ·

(
~E (Q)
`νλ (2ω) +

∑
`′ν′λ′

↔
M `νλ`′ν′λ′ · ~p (tot)

`′ν′λ′(2ω)

)
,

where

(~p`νλ(2ω))i = χ
(d)`νλ
ijkl (~E`νλ(ω))j∇l(~E`νλ(ω))k. (3.19)

Expression (3.19) is obtained from Eq. (3.5) where we have neglected the magnetic con-

tribution of the magnetic susceptibility of each bond. The second-order dipole moment
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is also driven by the linear response to the field at 2ω due to the oscillating quadrupoles,

(~E (Q)
`νλ (2ω))i =

1

2

∑
`′ν′λ′

(
↔
N `νλ`′ν′λ)ijk(

↔
Q`′ν′λ′ (2ω))jk, (3.20)

which, with the help of Eq. (1.12), can be written as

(~E (Q)
`νλ (2ω))i =

1

2

∑
`′ν′λ′

(
↔
N `νλ`′ν′λ)ijkχ

(Q)`′ν′λ′

jklm (~E`νλ(ω))l(~E`νλ(ω))m. (3.21)

Finally, the last term on the left-hand side of Eq. (3.18) represents the linear response

to the field at 2ω due to the other dipoles oscillating at 2ω and should be included to

achieve self consistency.

The gradient of the local field in Eq. (3.19) should be evaluated at the position of

the dipoles and is proportional to the linear dipole moment as

∇i(~E`νλ(ω))j = −
∑
n′λ′

(
↔
N `νλ`′ν′λ′)ijk(~p`′ν′λ′(ω))k, (3.22)

with the interaction tensor

↔
N `νλ`′ν′λ′ = −∇∇∇ 1

|~r − ~r`′ν′λ′ |

∣∣∣∣
~r=~r`νλ

, (3.23)

that decays quickly as the separation between planes increases. Similarly to Eq. (3.13),

Eq. (3.18) can be written as∑
`′λ′

[~1δ``′δλλ′ −
↔
α
`λ

(2ω)·
↔
M`λ`′λ′ ] · ~p tot`′λ′(2ω) = ~S`λ(2ω), (3.24)

where ~S is the non-linear source given by

(~S`λ(2w))i = − χ
(d),`λ
ijkl (~E`λ(ω))j

∑
`′λ′

(N`λ`′λ′)klm(~p`′λ′(ω))m (3.25)

+
1

2
α`λij (2ω)

∑
`′λ′

(
↔
N `λ`′λ′)jklχ

(Q),`′λ′

klmn (~E`′λ′(ω))m(~E`′λ′(ω))n,

which is expressed in terms of the linear dipole moment ~p`λ(ω) (see Eq. (3.13)). The
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linear local field ~E`λ(ω) is obtained through the linear dipole moment as

~E`λ(ω) = (
↔
α
λ
(ω))−1 · ~p`λ(ω). (3.26)

Equation (3.24) gives the non-linear dipole moment of each dipole that is in the plane

` with orientation λ. Therefore, the total surface second-order dipole moment would be

the sum of the contributions of all dipoles, i.e.

~P tot(2ω) =
∑
`λ

~p
(tot)
`λ (2ω) (3.27)

Notice that, in principle, the sum in Eq. (3.27) is carried out over all dipoles in the

system i.e, ` runs from ` = 0 (from the surface) to ` → ∞ (to the bulk), however

since the interaction tensor between surface dipoles with bulk dipoles decays quickly

with plane separation, the source ~S in Eq. (3.24) converges to a fixed value and thus,

the total surface non-linear dipole moment ~p
(tot)
`λ (2ω) as well. This means that we should

only sum over a finite number of planes to get the total surface non-linear dipole moment.

On the other hand, we have to add the finite bulk contribution to the signal whose

origin comes from the quadrupole moment [20], i.e.

P tot
i (2ω)→ P tot

i (2ω)− 1

2

∑
λ

(
↔
Qλ(B, 2ω))iz, (3.28)

with

(
↔
Qλ(B, 2ω))ij = χ

(Q),λ
ijkl (~E(B,ω))k(~E(B,ω))l (3.29)

where ~E(B,ω) is the local field at the bulk.

Once the total polarization is obtained we could obtain the different susceptibility

components by making use of the definition of the second order polarization Eq. (1.5).

First, we fixed the external electric field ~E(A, ω) in different directions; if ~E(A, ω) =

Ej(A, ω)êj, it would be possible to obtain χixx, χiyy and χizz, with i = x, y or z, through

P tot
i = χijj(ω)Ej(B,ω)Ej(B,ω) (3.30)

where ~E(B,ω) is the macroscopic electric field inside the medium which differs from the
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external electric field ~E(A, ω) through the equation

~E(B,ω) = (Ex(A, ω), Ey(A, ω), Ez(A, ω)/ε(ω)) (3.31)

with ε(ω) the dielectric function. If now ~E(A, ω) is let to have two no null components,

namely, Ej(A, ω) and Ek(A, ω) with j 6= k, thus we have

P tot
i = χijjE

2
j (B,ω) + χikkE

2
k(B,ω) + 2χijkEj(B,ω)Ek(B,ω). (3.32)

Knowing χijj and χikk, Eq. (3.32) can be solved for χijk, generating the 27 components

of
↔
χ. Indeed, some of these components would be identically zero due to the symmetry of

the system. Then, the SHG efficiency R(ω) can be calculated in terms of the non-linear

susceptibilities through Eq. (2.14).

Once we have calculated the surface SHG, we have to add the bulk contribution to

the surface SHG from a centrosymmetric medium. This contribution has its origin in

the non-vanishing electric quadrupolar bulk contribution to the non-linear polarization

which is related to the small but finite field gradient within a homogeneous system (see

Chap. 1). However, as we mentioned above, such a contribution is negligible (at least an

order of magnitude smaller than the surface contribution) in media with large dielectric

constant such as metals and semiconductors. This is actually our case and thus, we refer

the reader to see Ref. [8] for details of the bulk contribution to the SHG. Nevertheless in

the following results the negligible bulk contribution has been included.

3.6 The reconstructed silicon surface

The structural reconstruction of the silicon surface has been widely studied due to

its technological importance. The interest has been focused on understanding the basic

physical properties of the clean surface: its growth, the process of adsorption of foreign

atoms, etc. In this respect, the knowledge of the atomic structure of the clean surface

is needed. It is now accepted, that the dimers (pairs of atoms) are the main structural

units of the reconstructed silicon surface. Surface atoms, having two dangling bonds (per

atom), are assumed to form a dimer to lower their energy, then the formation of surface

dimers would remove one of the two dangling bonds per surface atom without necessarily

changing any bond lengths by more than a few percent [81]. Furthermore, surface dimer-
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Figure 3.2: Reconstructions of the Si(100) surface: the ideal surface(top panel), 2× 1 recon-
structed surface with symmetric dimers (middle panel) and 2 × 1 reconstructed surface with
asymmetric dimers (bottom panel). The dimers are shown with a thicker line.
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ization introduces sizable subsurface angular strains which drive a substantial and deep

reconstruction of the subsurface region that extends five atomic layers into the bulk [82].

Two different dimers models have been proposed: that of a structure with symmetric

dimers and that of a structure with asymmetric dimers, where the dimers buckle out of

the plane of the surface (see. Fig. 3.2). Chadi found that the energetically favorable

reconstructions 2×1 and c(4×2) correspond to asymmetric dimers [83].

The optical techniques can predict the proper atomic structure due to the dependence

of the selection rules on symmetry. For instance, Shkrebtii and Del Sole presented strong

evidence in favor of the presence of asymmetric dimers at the Si(100)2×1 surface by

a microscopic calculation of the differential reflectance, i.e. the difference between the

reflectivities of the clean and oxidized surface [84], Palummo et al. carried out ab initio

calculations of the optical properties of the Si(100) surface within density functional

theory within the local density approximation (DFT-LDA) [11] meanwhile, Mendoza et

al. applied a microscopic formalism to calculate the SH spectra of clean and hydrogenated

Si(100) surfaces [9, 45].

3.7 Principal polarizabilities

In Secs. 3.4 and 3.5, we have set up Eqs. (3.13) and (3.24), that allow us to obtained

the linear and non-linear dipole moments within the model of polarizable entities. These

equations depend on the linear polarizability and the non-linear susceptibilities which

also are given in terms of the linear polarizability through Eqs. 3.6 and 3.9. Thus, from

the knowledge of the linear polarizability it is possible to obtain the linear and non-linear

response of a medium to an external field.

We will study the Si surface and thus we describe, in this section, the procedure to

follow to obtain the linear polarizability. Close to the visible spectral region, we expect

that the main contributions to α‖ originate in bonding-antibonding transitions, while

α⊥ is due mainly to transitions involving atomic states with different symmetry. We

assume that α⊥ has larger resonant frequencies than the α‖, and we approximate α⊥ by

a Lorentzian function, centered at some relatively high frequency ω⊥ with weight related
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to ωp and damping parameter ωc. Then,

α⊥(ω) =
(fωp)

2

ω2
⊥ − (ω + iωc)2

, (3.33)

where the factor f is allowed to be proportional to the amount of charge transfer to the

upper Si of the dimers; ωp has a fixed value, and the factor f = 1 is taken for all dipoles

except that of the dimer for which f ≥ 1.

In order to obtain α‖(ω), we start by using [75]

~D = ~E + 4π ~P (3.34)

which relates the displacement vector field ~D to the electric field ~E through the polar-

ization ~P . With the help of the constitutive relation ~D = ε ~E, we obtain the relation [8],

~P (α‖, α⊥) =
ε(ω)− 1

4π
~E (3.35)

where the polarization should be calculated at the bulk and we have emphasized the

dependence of ~P (α‖, α⊥) on the principal polarizabilities (see. Eqs. (3.13) and (3.14)).
~E(B,ω) is the macroscopic electric field in the bulk and ε(ω) is the bulk dielectric function

of the crystal that is determined experimentally. Therefore, from Eq. (3.35) and with

the help of Eq. (3.17) we can obtain α‖ from the knowledge of α⊥ and the experimental

measurements of the dielectric function [85]. Therefore, once ω⊥, ωp and ωc are chosen

in Eq. (3.33), equation (3.35) can be solved for α‖ for any given ε(ω).

For instance, in Fig. 3.3, we show α‖ of Si as a function of frequency with the

parameters h̄ω⊥ = 7.17, h̄ωp = 1.68, h̄ωc = 0.2 and f = 1. The value of h̄ω⊥ is of

the order of the transition energy between the atomic states of Si 3p23P with J = 0

and 3d3D0 with J = 1 [86], in qualitative agreement with the discussion preceding Eq.

(3.33). We observe in Fig. 3.3 the usual peaks due to the singularities or the bulk

density of states, although they are substantially shifted due to short range Coulomb

and exchange interactions. We recall that the bulk local field effect induces an almost

equal but opposite shift [87, 88].
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Figure 3.3: Imaginary part of the axial bond polarizability of Si as a function of frequency.
The structure is shifted from the singularities of the joint density of states, due to short range
Coulomb and exchange interactions, which are compensated within the bulk by the long range
local field effect.

3.8 Polarizable bond model for the Si surface

In this section, we proceed to study the structure of the reconstructed Si(100) surface

by using the polarizable bond model. This model has the advantage of having a simple

interpretation, and has been successfully applied to Si surfaces [6,8,10,24]. For instance,

the model of Mendoza and Mochán [8] supports the conclusion of Daum et al. [29] that

the bulk E1 transition of Si yields a SHG resonance of the clean or oxide-covered Si(100)

surface due to the vertical strain induced by surface reconstruction. In Ref. 8, optical

spectra SHG were calculated for the unreconstructed surface where the effect of recon-

struction was incorporated by a strain induced through a vertical displacement of the first

atomic plane. However, the model was not compared with RAS since no experimental

data were available.

In this section, we relax the simple approximation of vertical displacement for inducing

the strain, and we apply the polarizable bond model to calculate RAS and SHG spectra of

fully relaxed (i.e. reconstructed) Si(100) surfaces. Within this model, the semiconductor

Si crystal is treated as an array of point-like polarizable dipoles with a dipole located at

the center of each Si-Si [74] bond since the maximum distribution of charge is located

there (see Fig. 3.1). However, for the bond corresponding to the dimer, the actual

position of the dipole may be off-centered due to the charge transfer (of e/3 with e the
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electron charge) to the upper atom that takes place as the surface reconstructs [83].

We use three atomic reconstructions characterized by their dimer buckling: 0 Å (sym-

metric dimers), 0.7 Å and 0.6 Å whose atomic coordinates were calculated by minimizing

the total energy of the surface, Ref. 81 and Ref. 89, respectively. We take the follow-

ing values for the frequency parameters of Eq. (3.33): h̄ω⊥ = 7.05 eV for both surface

(including the dimer) and bulk dipoles, and h̄ωp = 1.68 eV. These values were obtained

by finding simultaneously the best agreement with the experimental results of RAS and

SHG. The value of h̄ω⊥ is of the order of the transition energy between the atomic states

of Si 3p23P with J = 0 and 3d3D0 with J = 1, [86] in qualitative agreement with the

discussion before Eq. (3.33). These parameters are also consistent with those used in

Ref. 8. Finally we mention that the results do not depend strongly on ωc as long as

ωc � ω⊥ (we take h̄ωc = 0.2 eV) and that a good numerical convergence occurs with

∼ 80 crystalline planes. The results are compared to experimental data measured from

single domain surfaces for RAS [68, 90] and double domain surfaces† for SHG [31, 32].

The components of
↔
χ for the double domain (100) surface are obtained through

χ⊥⊥⊥ = χzzz (3.36a)

χ⊥‖‖ = (χzxx + χzyy)/2 (3.36b)

χ‖‖⊥ = (χxxz + χyyz)/2 (3.36c)

Besides we have the relations χIzxx = χIIzyy, and χIxxz = χIIyyz between susceptibility com-

ponents of domains I and II.

Figure 3.4 shows RAS and the SHG spectra for the Si(100) surface. The spectra

shown are for the ideal 1×1 surface, strain-relaxed surface where the last layer of atoms

is relaxed inward by 5% of the interplane distance [24] and for the reconstructed 2×1

surface. It is mentioned that in these cases the same values for the frequency parameters

of equation (3.33) are used, with f = 1, for all dipoles (including the dimers). In the

RAS spectrum, we see that the ideal surface (1×1) has no structure. On the other hand,

†We refer to single domain surfaces when all the dimers of the reconstructed Si(100) surface are
oriented only in one direction (domain I) whereas double domain surfaces are those where the dimers
have two different orthogonal orientations (domain I and II). The RAS measurement of Si(100) requires
a single domain sample since it requires the measurement of reflectance of light polarized along the
directions parallel and perpendicular to the dimers. Whereas the SHG measurement may be made in
a double domain sample. This fact is taken in the SHG calculations into account by considering Eqs.

(3.36) for
↔
χ .
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Figure 3.4: Top(bottom) panel shows the RAS (SHG) optical spectrum of Si(100) surface. The
dashed line is for the ideal(1×1) surface (in SHG, ×5), the dotted line is for the strain-relaxed
surface (in SHG, ×5 ), the thin solid line is for to the 2×1 reconstructed surface (in SHG, ×.5).
Experimental spectra are also shown: for RAS, the thick solid line is that of R. Shioda and J.
van der Weide [68] and the thick dashed line is that of Jaloviar et al. [90]; for SHG, the thick
solid line is that of Dadap et al. [31] and the thick dashed line is that of Höfer [32].

the strain relaxed surface shows a positive anisotropy around 3.4 eV which is not seen

in the experimental spectrum. The RAS spectrum for the 2×1 surface shows the low

frequency experimental peak found at 1.6 eV but displaced in energy by 0.2 eV upward.

This peak is usually assigned to a surface state [11], which in our theory results from the

local field. The positive experimental structure at 4.3 eV is also qualitatively reproduced

but displaced in energy by 0.4 eV.

On the other hand, it is seen in the SHG spectrum of Fig. 3.4 that both the strain-

relaxed and the reconstructed 2×1 surfaces reproduces the experimental peak at 3.36 eV

thus confirming the conclusion made by Daum et al. [29] that the bulk E1 transition

of Si yields a SHG resonance at the Si(100) clean or oxide covered surface due to the

vertical strain induced by surface reconstruction. Notice that the SHG spectrum for

the ideal 1×1 surface has no structure. For better correspondence with the experiment

the SHG spectrum has been moved by 0.1 eV and 0.2 eV for the strain-relaxed and 2×1

reconstructed surface respectively.

Figure 3.5 shows the RAS and SHG spectra of the Si(100)2×1 surface for three surface

reconstructions with different bucklings [81, 89], along with the experimental results of

Refs. 68 and 90 performed on highly oriented single-domain surfaces for RAS and Refs.
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Figure 3.5: In the top and bottom panel the RAS and SHG spectra for p-in P -out polarizations
of clean Si(100)2 × 1 are shown, for different dimer bucklings: 0 Å (symmetric dimers) (long
dashed line), 0.6 Å (thin solid line) and 0.7 Å (dashed line). The thick solid and dashed lines
correspond to the experimental spectra as in Fig. 3.4. It is mentioned that the vertical scale
for SHG is within the same order of magnitude as the microscopic calculation of Ref. 45, and
that the energy has been shifted upwards by 0.3 eV.

31 and 32 performed on double domain surfaces for SHG. All dipoles (including the

dimers) are taken to have identical
↔
α (ω), with f = 1. For RAS we observe the following

features. All theoretical spectra show three features above 3.5 eV, that are near the

experimentally determined values of 3.6 eV, 4.3 eV and 5.3 eV. However, only the surface

with a buckling of 0.7 Å gives the RAS features having correct signs at 3.9 eV and

4.2 eV, in qualitative agreement with the experimental results. The RAS spectrum for

the surface with symmetric dimers shows a feature at 3.3 eV in correspondence with the

experimental one at the same energy. However, this case also shows a broad and large

negative structure at 2.4 eV not seen in the experimental curves. In addition, only the

RAS spectrum of the geometry with buckling of 0.6 Å has a feature at 1.5 eV, which

qualitatively reproduces the experimental one at 1.6 eV. Similar results are reported by

Palummo et al. [11] at 1.5 eV and 4.3 eV, where the RAS spectra are obtained for the

(2×1) surface through ab initio calculations within DFT-LDA using reconstructions with

symmetric dimers, with bucklings of 0.56 Å and 0.71 Å. Fig. 3.6 shows their spectra, the

low-energy peak, essentially due to dimer surface states, shifts from 1 to 1.4 eV due to an

opening of the gaps and changes its sign, in going from the symmetric to the asymmetric

case. The same peak increases in strength and shifts slightly to 1.6 eV with increase

of the buckling. On the other hand, the positive structure at 4.3 eV reduces as the

buckling increases. We mention that the RAS spectra calculated there and shown in
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Figure 3.6: RAS spectra for the Si(100)2×1 surface as a function of dimer buckling of Ref.
11 calculated within the DFT-LDA. The dotted line is for the structure with symmetric dimers
(buckling of 0 Å), the dashed line is for the structure with buckling of 0.56Å, and the thin
solid line is for the structure with buckling of 0.71Å. The experimental spectra is shown for
comparison as in Fig 3.4.

Fig. 3.6 have several features between 1.5 eV and 4.0 eV that are not present neither

in the experimental data nor in our spectra. Even though the qualitative experimental

behavior is reproduced with the ab initio calculations shown in 3.6, it is remarkable that

the calculated spectra for RAS, within the polarizable bond model show a much better

lineshape. In principle both calculations, within the polarizable bond model and within

ab initio calculations of Ref. [11] reproduce qualitatively the features around 1.6 eV and

4.3 eV seen in the experiment. The best agreement of RAS with the experiment in both

models is found to be for a surface with buckling of ∼ 0.6 Å.

Moving to SHG we obtain the results of Figs. 3.5 and 3.7 where we have shifted the

theoretical curves upward by 0.3 eV to provide better correspondence between calculated

and measured structures. We see from Fig. 3.5 that for the surface with a buckling

of 0.6 Å, the E1 resonance seen experimentally at 3.4 eV (in the two-photon energy)

is reproduced. At 4.6 eV there is another peak which corresponds to the bulk E2 Si

transition. Also, for this surface there is a peak at 1.8 eV. For the surface with a buckling

of 0.7 Å the E1 peak appears, but now it is now blueshifted in comparison with that

of the previous surface, and the E2 peak is seen as a small shoulder slightly redshifted

with respect to the same previous surface. Furthermore, the intensity of its spectrum is

an order of magnitude smaller than that of the surface with buckling of 0.6 Å. For the

surface with zero buckling, we find that the E1 peak is strongly redshifted to 2.7 eV, and
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E2 is also strongly blueshifted to 5 eV, which is not shown in the plot since it has a large

intensity. The qualitative dependence of the SHG E1 resonance on the buckling of the

dimer is also seen in the microscopic model of Ref. 91 but the shifting of the E1 peak is

now downward in energy as the buckling increases.

Thus, our results may imply that if the local field is incorporated into a microscopic

calculation, one should expect the SHG resonant peaks to shift. Finally we mention that

neither case reproduces the surface peak at 3 eV seen in the experimental curve. This

peak is obtained in the microscopic theory of Ref. 45 and is due to electronic surface

states related to the dimer (see Chap. 4). Since we have treated the dipole corresponding

to the dimer’s bond in the same manner as (except for its orientation) a bulk bond, we

should not expect to have a surface related transition.

In principle one should be able to chose an appropriate
↔
α (ω) for the dimer and

surface bonds in order to reproduce the surface SHG peak at 3 eV. However, we would

like to keep the number of adjustable parameters to a minimum, and instead try to look

into the phenomenology that the present model allows in simple physical terms, and see

its consequences in the RAS and SHG spectra. Therefore, in what follows we explore an

interesting point related to the prediction of Chadi by which, in a tilted dimer, there is

a charge transfer of ∼ e/3 into the upper Si atom of each buckled dimer [83]. In order to

include such a charge transfer in our model, we can adjust the following two variables:

a) f for the dimer alone (see Eq. 3.33), since it is proportional to the dimer electronic

charge density through the plasma frequency

ω2
p =

4πn0e
2

m
(3.37)

where n0 is the electronic charge density, e is the electron charge and m is the electron

mass; and b) the position of the point dipole that replaces the dimer’s bond, from its

nominal centered position ∆ = 0, to an off-centered position ∆ 6= 0, since the charge is

redistributed in the same manner as its centroid.

We have done such an exploration for the surface with a buckling of 0.6 Å, and have

found that the RAS and SHG spectra that better reproduce the experimental data are

those with f = 1.9 and ∆ = 0.25a towards the upper Si atom of the dimer, where a the

dimer’s bond length. Both values are consistent with the Chadi’s prediction of charge

transfer. A roughly estimate of the possible value of f is as follows: from Eq. (3.37) we see

that the plasma frequency is proportional to the electronic charge as ωp ≈ n
1/2
0 , according
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Figure 3.7: The top figure shows the dimer with a curve showing the distribution of charge.
The plots are the same as Fig. 3.5, for a dimer buckling of 0.6 Å. The dashed line is for ∆ = 0,
whereas the dotted line is for ∆ = −0.25a and the solid line is for ∆ = 0.25a , which gives the
dimer’s dipole displaced towards the lower or upper Si by 0.25 of its length respectively. Both
spectra have the same f = 1.9. The thick solid and dashed lines are the experimental spectra
of Refs. 68 and 90 for RAS and Refs. 32 and 31 for SHG.
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to Chadi prediction of charge transfer to the dimer, there should be a displacement of

charge of 1/3 to the upper atom that forms the dimer, changing the effective charge at

the dimer to 4/3 of its value of the bulk Si-Si bond. Besides, taking into account the

union of two atoms, what in fact forms a dimer, we multiply by 2 the charge density.

Thus, we have n0 → [(2 × 4/3)n0]
1/2 ≈ 1.6n

1/2
0 . On the other hand, the displacement

of charge to the upper atom of the dimer makes the center of mass of the charge to be

displaced upward by 1/6a towards the upper Si atom.

We show in Fig. 3.7 the RAS and SHG spectra for such values of f and ∆. Comparing

the spectra, we see that ∆ = .25a gives a much better lineshape than ∆ = 0 (whose

spectrum is larger by a factor of 2), since the RAS feature at 1.5 eV and the SHG peak

E2 at 4.5 eV are very well defined. Also, the RAS spectrum qualitatively reproduces the

small feature‡ seen in the experiment of Ref. 90 above 5 eV. On the other hand, if we

use a negative ∆ which would imply an off-centered dipole towards the lower Si atom

in the dimer (see top of Fig. 3.7), we obtain in the RAS spectrum a similar lineshape

above 3 eV as the case for positive ∆, however the spectrum has a huge feature at 1.5 eV.

Similarly, the SHG spectrum shows an enhanced E1 peak. These features for negative

∆ do not agree with the experimental results, thus confirming the prediction of Chadi

through this optical model. [83].

To understand the origin of the structure shown in the above spectra, we proceed as

follows. The solution of the total dipole moment that represents the polarization of the

system has the following structure [92,93]

p(nω) ∼ S(nω)

1− α(nω)M
∼ T (nω)S(nω), (3.38)

where n = 1, 2 refers to the linear or non-linear solution, respectively. We identify the

local field E as T (nω) ∼ (1−α(nω)M)−1 and S(ω) as the linear source proportional to the

external perturbing field. On the other hand, S(2ω) is the non-linear source proportional

to T 2(ω), with M representing the dipolar interaction tensor, and α(ω) representing
↔
α (ω) (see. Eq. (3.2)). From Eq. (3.38), p(ω) could have structure only from the local

field T at ω, since S(ω) has no structure. In contrast, p(2ω) could have structure at 2ω

directly from T (2ω), and also through S(2ω) which is driven by the local field T at ω.

For instance, we have checked that in Fig. 3.7 the SHG peak at 2h̄ω = 1.8 eV comes

from the local field T at 2ω, and that the SHG E1 peak comes from the local field T at

‡We do not add further comments in the qualitatively agreement on this feature since the errors bars
of the experimental spectrum of Ref. [90] are roughly of the same magnitude.
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Figure 3.8: RAS and SHG spectra for the 2×1 reconstructed surface. The dotted(dashed) line
is for the case when the interaction of the 1st, 2nd, 6th-8th (3rd through 5th) subsurface plane
of bonds with the dimers is artificially set to zero. The thick solid lines are for the experimental
data as in Fig. 3.5.

ω (through the non-linear source), just as the RAS feature at 1.5 eV also comes from the

local field T at ω§

Within this model, we also can explore the localization of the dominant interaction of

the dimer with the sub-surface bonds. In principle this exploration will give information

on the origin of the features seen in the RAS and SHG spectra. This can be done by

taking off (setting to zero) the interaction of the dimers with the sub-surface bonds. The

results, for the RAS and SHG spectra, are shown in Fig. 3.8 where it is seen that 1.5 eV

peak disappears in the RAS spectrum when the interaction of the 3rd through the 5th

bond layers with the dimers is taken off. Similarly the E1 peak in the SHG spectrum is

not well defined. This behavior suggests that it is the interaction of these planes with the

dimers which gives the anisotropy found at 1.6 eV and the E1 resonance for SHG. These

results show clearly how RAS and SHG are sensitive to the surface and sub-surface region

reconstruction. Similar qualitative results will be found in the microscopic treatment of

Chap. 4, in which the electronic transitions are between dimer and sub-surface electronic

§We mention that double resonances where S(2ω) and E(2ω) resonate at the same frequency producing
a huge enhancement of the SHG yield, could be found in other type of structures by adjusting the
geometry of the system as shown in Ref. 92.
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Figure 3.9: RAS and SHG spectra for the Si(100) surface with reconstruction 2×1(thin solid
line) and c(4×2)(dotted line). The thick solid and dashed lines are for the experimental data
as in Fig. 3.5.

states.

In order to compare with other reconstructions, we have calculated RAS and SHG for

the most favorable reconstructed c(4×2) surface [83] at low temperatures using the same

parameters as that of the 2×1 case (see Fig. 3.9). The RAS spectrum shows an enhanced

anisotropy feature (negative) at 3.5 eV and a broad feature (also negative) at 4.4 eV,

which do not reproduce the experimental spectra as good as the 2 × 1 structure shown

also in Fig. 3.5. Although the RAS spectrum shows a qualitatively good agreement with

experiment for energies above 5 eV, we do not add further comments, as before, in the

qualitatively agreement on this feature since the errors bars of the experimental spectrum

of Ref. [90] are roughly of the same magnitude. For SHG the E1 is well reproduced, but it

has a larger intensity than the 2×1 case. It also shows a very weak E2 resonance. Neither

the RAS nor the SHG give a peak at 1.5 eV, in contrast with the 2× 1 for a buckling of

0.6 Å, and the surface peak at 3 eV for SHG is also not present. The SHG spectrum for

the c(4×2) gives a good SHG E1 resonance, however the RAS spectrum does not give

good agreement with experiment. This might suggests that 2 × 1 reconstruction or a

combination of both reconstructions of the experimental sample i.e the main features in

the spectra might have its origin on the presence 2×1 and c(4×2) reconstructions of the
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sample.

We finally mention that for the ideally terminated (100) surface we find a finite RAS

spectrum (see Fig. 3.4). On the other hand, the SHG spectrum has no E1 peak, thus

confirming the statement that the surface reconstruction gives rise to the observed non-

linear spectra.

3.9 Conclusions

In this chapter, we have described the model of polarizable bonds and then we have calcu-

lated, within this model, the surface RAS and SHG optical spectra of clean Si(100)2× 1.

We find that both RAS and SHG are sensitive to the buckling of the dimer and that,

for a surface with dimer buckling of 0.6 Å, it qualitatively reproduces most of the ex-

perimental features reported in the literature. By changing parameters of the model, we

conclude that the structures found in RAS and SHG are produced by the atomic recon-

struction of the surface through the local field induced in the surface and sub-surface

region. We calculated also RAS and SHG spectra for a c(4 × 2) surface reconstruction.

The RAS spectrum does not show the the surface-related peak at 1.5 eV however, it

shows a good qualitative agreement with experiment for energies above 5 eV. Whereas

in the SHG spectrum, we found that the E1 resonance is in well agreement with exper-

iment. The surface sensitivity shown by this model is such that, as a further extension

of this work, one can refine the dimer geometry by varying structural parameters and by

choosing a few frequencies, like E1 and E2, at which to fit the spectral features of RAS

and SHG. However, this is beyond the scope of the present thesis. Finally within the

polarizable bond model, we see that the 2 × 1 reconstruction of Si(100) yields a better

agreement with experiment than the c(4 × 2) structure in contrast with the conclusion

of the microscopic calculations of Ref. [45]. To make a direct comparison with the above

theoretical results, we suggest that the same sample should be studied in RAS and SHG

spectroscopic experiments.



Chapter 4

Microscopic study of SHG from

semiconductor surfaces

4.1 Introduction

We have studied in Chap. 3 the linear and non-linear optical response of the Si(100)

surface through the polarizable bond model. Such a phenomenological model has allowed

us to get a physical understanding of the origin of the optical response of this surface in

a very simple way. We concluded that the reconstruction of the surface through the local

field induced in the surface and sub-surface region was responsible for the structures seen

in reflectance anisotropy spectroscopy (RAS) and second harmonic generation (SHG)

spectra. Furthermore, we have explored, within this model, the prediction of Chadi [83]

of charge transfer to the upper atom of the dimer at the surface. The overall good

agreement with the experimental results that the polarizable bond model yields has been

a step forward into the understanding of the physical properties of the Si(100) surface,

but there are still too much to be done, since this classical and phenomenological model

lacks of a complete description of the electronic transitions involved in the band structure.

The proper calculation of the second-order non-linear response must be on the basis

of a quantum-mechanical microscopic theory from which the information of the origin of

the SHG optical response of media could be obtained. The semi empirical tight-binding

(SETB) theory allows to calculate the SHG including a realistic calculation of the band

structure. Microscopic models to study the non-linear optical response, for simple metals,

47
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we find self consistent calculations employing the time dependent local density approxi-

mation (TDLDA) applied to the jellium model [52, 58–61]. Whereas, for semiconductor

surfaces, we have the microscopic formalism [66] of Cini where he found closed expres-

sions to calculate the SHG. Based on this formalism Reining et al. [42] calculated the

SHG of the As-covered Si(111) surface. Later, Gravrilenko and Rebentrost showed that

the SETB theory could give qualitatively correct predictions of the non-linear optical re-

sponse of both reconstructed and unreconstructed clean semiconductor surfaces [43, 44].

Also, Mendoza et al. [45] have calculated the surface SHG from clean and H-covered

Si(100). Their microscopic calculation showed that the bulk E1 resonance occurs in sur-

face SHG spectra through electronic transitions across surface-perturbed bulk states, that

H adsorption modifies the SHG lineshape by reducing the E1 resonance and suppressing

the spectral structures due to transitions across surface states and that, contrary to what

may be argued, the χ⊥⊥⊥ component of the second-order surface susceptibility does not

dominate the SHG signal. Instead, they found that the χ‖‖⊥ component of the second-

order surface susceptibility is mostly responsible for the observed features. Therefore,

it is the inter-play of both in-plane and perpendicular components of
↔
χ that gives rise

to the SH response. In the following we use the same model and propose a method to

systematically investigate the different contributions of the non-linear susceptibility to

the observed peaks in SHG. Part of this work is reported in Ref. [94].

The approach consists in the separation and analysis of the different microscopic

contributions to the non-linear susceptibility by which the radiated SHG is calculated.

Similar analysis have been presented in Ref. 95 for bulk SHG from cubic semiconductors,

and in Ref. 42 for surface SHG from H and As-terminated Si(111). However, both studies

only analyzed the 1ω and 2ω transitions and did not attempt to go any deeper into the

nature of their predicted resonances. With our approach we are able to determine the

bulk or surface nature of the transitions, their 1ω or 2ω character, and their localization

within the surface or bulk atoms, thus giving a complete description of the SHG spectrum.

We take as an example clean Si(100) with a c(4 × 2) reconstruction, which is the

energetically most favorable structure at low temperatures [96], and use the same mi-

croscopic model as that of Ref. 45 to continue its study of SHG. This model uses

the SETB approach with a sp3s∗ basis set.∗ The SETB method has also been fre-

∗In the tight-binding (TB) method [97, 98] each atom is associated with a finite set of orbitals, or
atomic basis states, each of which can be occupied by two electrons. To describe the bonding in silicon
requires a minimal sp3 basis consisting of one s orbital and three p orbitals for each atom [99]. Attempts
to fit the conduction bands of semiconductors with a nearest-neighbor sp3 basis have been failed. To
overcome this deficiency Vogl et al. [100] included an excited s state, s∗, on each atom, giving an sp3s∗
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quently and successfully employed to study the linear optical properties of semiconduc-

tor surfaces [84, 102, 103]. In particular we mention that the linear optical results for

the Si(100)2 × 1 surface reconstruction have been compared with ab initio methods by

Palummo et al. [11]. They analyzed two optical probes, RAS and surface differential

reflectivity (SDR). The conclusion of this work was that due to the omission of second-

neighbor interactions in the SETB scheme, the RAS signal has the wrong sing for the

low energy structures, but for the rest of the spectra there is a one to one correspondence

between SETB and ab initio structures. On the other hand, the SDR spectrum being

an average over two perpendicular polarizations depends less critically on the theoretical

scheme used, and thus SETB and ab initio SDR agree rather well. Palumno al. [11] cal-

culated RAS and SDR spectra for Si(100)c(4× 2) surface confirming the aforementioned

behavior. However, the ab initio spectra have some surface features at low energy not

shown by the SETB calculation. A similar comparison between SETB and ab initio SHG

calculations shows that for Si(100)c(4× 2) the spectra basically agrees [47] above 2 eV in

the two-photon energy (see inset of Fig. 4.3). These two methods will be used to study

B and H-covered Si(100) surfaces in Chap. 5. The SETB approach has the advantage of

being computationally less intensive. Within this approach we find that the clean Si(100)

with a c(4× 2) reconstruction has besides the 3 eV and E1 SHG resonances already mea-

sured in Ref. 31 and theoretically reproduced in Ref. 45, a low energy surface resonant

peak at 2ω ∼ 2.2 eV which the recent spectrum obtained by Mantese et al. [104] in the

infrared region, seems to corroborate. Thus, the analysis of the non-linear process that

converts the incoming radiation into SH radiation through the non-linear susceptibility,

will shed new information on the microscopic behavior of this surface.

The chapter is organized as follows: we describe, in Sec. 4.2, the procedure to calculate

the SHG efficiency through the non-linear susceptibility tensor
↔
χ, and the decomposition

of
↔
χ into its different contributions. In Sec. 4.3, we show the spectra of the different

↔
χ

terms that contribute to SHG of a Si(100)c(4 × 2) surface, and analyze the resonances

found at 2ω ∼ 2.2, 3 eV and the bulk E1. Finally in Sec. 4.4, we give conclusions.

basis. The inclusion of various excited states (including the d states [101]) would obtain the correct band
structure.
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4.2 Nature of the transitions through the non-linear

susceptibility

A microscopic approach to the calculation of
↔
χ was proposed by Cini [66] and adapted

for a semiconductor surface by Reining et al. [42]. This method has the characteristic

that within the same formalism one calculates the microscopic susceptibility and the

radiated SH efficiency. We use a slab approach to mimic the semi-infinite system. The

main steps taken to this end will be described. The key point is the calculation of the

vector potential from which the non-linear radiated fields are calculated, and thus, the

SHG yield is obtained through

R(ω) =
I(2ω)

I2(ω)
, (4.1)

where the I(ω) is the intensity of the external field and I(2ω) is the intensity of the

generated harmonic field given by

I(2ω) = c|E(2ω)|2/8π. (4.2)

The vector potential ~A(~r, t) is given by [105]

Ai(~r, t) = − 1

h̄c

∫
d~r ′
∫ t

−∞
dt′DR

ij(~r, t;~r
′, t′)Jj(~r

′, t′), (4.3)

where
↔
DR is the retarded Green function appropriate for an interface [106], and ~J is

the induced current. The interaction of the electron with the electromagnetic field is

described through the perturbing potential given within the Coulomb gauge by

V = − e

mc
~A · ~p+

e2

2mc2
~A2 (4.4)

where ~A is the external perturbing field at ω and ~p is the momentum operator of the

electron. In the long wavelength approximation the term proportional to ~A2 does not

give rise to electronic transitions, thus it can be eliminated [107]. Applying perturbation

theory, the wave function to n-th order in V is given by

|ψ(n) >=
1

(ih̄)n

∫ t

−∞
dt′
∫ t′

−∞
dt′′ · · ·VI(t′)VI(t′′) · · · |ψ(0) >, (4.5)
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where the subscript I means that V is in the interaction representation† and ψ(0) is the

ground state wave function. To second-order, the induced current is given by

Ji =< ψ(0)|Ĵi|ψ(2) > + < ψ(2)|Ĵi|ψ(0) > + < ψ(1)|Ĵi|ψ(1) >, (4.6)

where ~̂J is the quantum mechanical current operator [105]

~̂J =
e

m
~̂p− e2

mc
~A. (4.7)

Substituting Eq. (4.6) and Eq. (4.5) into Eq. (4.3) and using ~J = ∂ ~P/∂t, where

Pi = χijkEjEk is the non-linear polarization, it is possible to obtain, within the long

wavelength approximation, the imaginary part of the non-linear susceptibility as [45]

=m(Xijk(ω)) =
πn0e

4

2Am3ω3

∑
~k

∑
r∈C

∑
s∈V{∑

n∈C

[(
P isnP j

nrP
k
rs

Ens − 2Ers
+
P j
snP inrP k

rs

Ens + Ers

)
δ(Ers − h̄ω)

−2
P isnP j

nrP
k
rs

Ens − 2Ers
δ(Ens − 2h̄ω)

]
(4.8)

−
∑
m∈V

[(
P imrP j

smP
k
rs

Erm − 2Ers
+
P j
mrP ismP k

rs

Erm + Ers

)
δ(Ers − h̄ω)

−2
P imrP j

smP
k
rs

Erm − 2Ers
δ(Erm − 2h̄ω)

]}
where we have used for the second-order susceptibility, Xijk for a single domain surface

and left the used of χijk for a double domain surface (see below). P i
sn(~k) is the matrix

element of the i-Cartesian component of the momentum operator (~̂p) between states

†In the interaction representation the time dependence of the system is partly transferred to the

operators while the wavefunctions varies slowly. Let the hamiltonian be of the form Ĥ = Ĥ0 + V̂ (t),

where Ĥ0 is the hamiltonian of the time independent non-pertubed system and V̂ (t) is the perturbation.

If L̂ is the operator of an arbitrary physical quantity and ψ(t) the time dependent wave function, then

in the interaction picture we have

LI = exp(
i

h̄
Ĥ0t)L̂ exp(− i

h̄
Ĥ0t),

ψI = exp(− i
h̄
Ĥ0t)ψ(t).
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s and n, which may be valence (V ), or conduction (C) states at point ~k in the two

dimensional-Brillouin zone (2DBZ), A is the sample area,

Enr = En(~k)− Er(~k), (4.9)

with En(~k) the one-electron energy. The emission of SH light is described by the modified

momentum operator

~P =
S(z)~P + ~PS(z)

2
, (4.10)

where S(z) is a function of z, being 1 at the front surface and 0 at the back surface, which

avoids the spurious destructive interference of SH light generated at the two surfaces of

the slab. For S(z) we have used a step function centered at the middle of the slab.

Using smoother functions yields the same SHG lineshape with only small changes in the

absolute magnitude of R(ω). We remark that Eq. 4.8 must be symmetrized in the last

two indices (jk) in order to comply with the intrinsic permutation symmetry of
↔
χ.

The fundamental electric field ~E(ω) oscillating at ω, given by ~E(ω) = iω/c ~A(ω), which

induces the non-linear response, is taken inside the surface. In particular, this field is

simply given by the external field properly multiplied by the corresponding Fresnel factors

[42]. A more detailed description of the fields, which incorporates the spatial variation

of the dielectric function near the surface within the three-layer model [42], shows no

change in the SHG peaks positions, and only slight difference in their intensity. However

the full treatment of the surface screening is still lacking, and further improvement of

the present formulation can be made along this point. This screening will presumably

affect more the zzz component of
↔
X than any other component, however is not at all

trivial to anticipate what the actual effect will be, and thus we explain the results within

the framework of our formalism. Also, at the present stage of the available calculations

for non-linear optical properties of semiconductor surfaces, like the one presented here,

local-field and excitonic effects are still beyond current capabilities and are thus neglected

throughout. Again, these effects along with the surface screening will prove to be crucial

for a quantitative comparison between theory and experiment.

The four different terms of Eq. (4.8) are written down according to 1ω and 2ω

transitions corresponding to the δ(E − h̄ω) or δ(E − 2h̄ω) terms, respectively. The

summations over states are written in such a way that the two external sums fix the

transitions that conserve energy (i.e. sum over r and s states), leaving as the most

internal summation the one over virtual states (i.e. sum over m states). Then,
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=m(X1ω,C
ijk ) =

πn0e
4

2Am3ω3
× (4.11a)∑

~k

∑
r∈C

∑
s∈V

∑
m∈C

(
P ismP j

mrP
k
rs

Ems − 2Ers
+
P j
smP imrP k

rs

Ems + Ers

)
δ(Ers − h̄ω),

=m(X2ω,C
ijk ) =

πn0e
4

2Am3ω3

∑
~k

∑
r∈C

∑
s∈V

∑
m∈C

P isrP j
rmP

k
ms

2Ems − Ers
2δ(Ers − 2h̄ω), (4.11b)

=m(X1ω,V
ijk ) = − πn0e

4

2Am3ω3
× (4.11c)∑

~k

∑
r∈C

∑
s∈V

∑
m∈V

(
P imrP j

smP
k
rs

Erm − 2Ers
+
P j
mrP ismP k

rs

Erm + Ers

)
δ(Ers − h̄ω),

=m(X2ω,V
ijk ) = − πn0e

4

2Am3ω3

∑
~k

∑
r∈C

∑
s∈V

∑
m∈V

P isrP j
msP

k
rm

2Erm − Ers
2δ(Ers − 2h̄ω), (4.11d)

where the superscripts refer to the type of ω-transition and C or V denote whether the

virtual transition m is over a conduction or a valence state, respectively. Notice that

if Ems = 2Ers the apparent divergence of =m
↔
X1ω,C is canceled by that of =m

↔
X2ω,C

for 2Ems = Ers due to the Dirac deltas of each term. A similar cancellation occurs

between =m
↔
X1ω,V and =m

↔
X2ω,V . Therefore this spurious divergences are avoided in the

individual terms given above.

We remark that Eqs. (4.11) must be symmetrized in the last two indices (jk) in order

to comply with the intrinsic permutation symmetry of
↔
X and we employ the Kramers-

Kronig transform to calculate the real part of
↔
X. Then, the components of

↔
χ for the

double-domain (100) surface are obtained through

χ⊥⊥⊥ = Xzzz, (4.12a)

χ⊥‖‖ = (Xzxx +Xzyy)/2, (4.12b)

χ‖‖⊥ = (Xxxz +Xyyz)/2, (4.12c)

where Xijk = Xikj are calculated for each of the two single-domain lattices.‡ With the

‡Notice that χIzxx = χIIzyy, and χIxxz = χIIyyz, for domain I and domain II.
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C V
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i

m

Figure 4.1: We sketch the two different transitions processes that contribute to SHG through
Eq. (4.8). The shaded rectangle represents the energy gap. Here, i is the initial state always in
the valence band, I is the intermediate state always in the conduction band, and m is the virtual
state which could be in the conduction band (denoted by the C diagram and corresponding to
Eqs. (4.11a) and (4.11b)) or in the valence band (denoted by the V diagram and corresponding
to Eqs. (4.11c) and (4.11d)).

help of Eqs. (4.11) and Eqs. (4.12), it follows that

↔
χ=

↔
χ1ω,C +

↔
χ2ω,C +

↔
χ1ω,V +

↔
χ2ω,V . (4.13)

Figure 4.1 shows a sketch of the different transitions corresponding to each of the

four terms of Eqs. (4.11). The transitions involved in the sums of these equations are

classified according to their surface or bulk character. To this end, the weightWm
~k

(Ni, Nf )

is defined as the accumulated squared modulus of the wave function ψm~k between planes

Ni and Nf . As before, ~k is the wave vector in the 2DBZ, and m denotes the corresponding

states which could be V or C. Then,

Wm
~k

(Ni, Nf ) =

Nf∑
`=Ni

∑
λ

|ψm~k (`, λ)|2, (4.14)

where ` = Ni denotes the starting plane and ` = Nf the final plane (Ni ≥ 1, and

Nf ≤ N) and λ are the remaining quantum numbers of ψm~k , like the ones required in the

sp3s∗ basis, which also need to be summed. Now, several criteria can be used to classify

m as a surface or as a bulk state. For instance, for a surface reconstruction localized

to within the first Ns surface planes, if Wm
~k

(1, Ns) ≥ Wm
~k

(Ns + 1, N −Ns), then m is a
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surface state at ~k, which means that the weight of the surface region is equal or larger

than the weight of the bulk. Also, if Wm
~k

(1, Ns) ≥ w, for w some fixed positive value,

then m is a surface state. For the case of an slab with a front surface different from

the back surface, we can also consider (Wm
~k

(1, Ns) +Wm
~k

(N −Ns, N))/2 as the effective

weight of the surface wave function, and use either of the two criteria just considered.

If the state m is not a surface state, it must be a bulk state. In what follows we have

found that the classification of surface and bulk states is basically the same using the

first criteria or the second one with w ∼ 0.3, which is a similar situation as the one used

in the linear response described in Ref. 108.

From Fig. 4.1, the states that enter the summations in Eqs. (4.11), are either surface

(s) or bulk (b), and thus each term in Eqs. (4.11) can further be classified according to

the surface or bulk nature of their three different transitions. The following notation is

defined:
↔
χ1ω,C ,

↔
χ2ω,C ,

↔
χ1ω,V ,

↔
χ2ω,V ←

↔
χnω,v(i, I,m), (4.15)

where the argument denotes the surface (s) or bulk (b) character of the initial state i

(always V), the intermediate state I (always C), and the virtual state m, which could be

either v = V or v = C. Also, n = 1, 2 refers to the type of ω transition. Considering

all the possibilities in Eq. (4.15), 32 different cases are possible. To make this notation

clear, we take any of the 32 possibilities as an example. For instance, χ2ω,C(s, b, s)

involves a surface(s)-bulk(b) 2ω transition, whose virtual state is a surface (s) state in

the conduction band (C). This term is calculated with Eq. (4.11b).

The analysis of the different contributions of
↔
χnω,v(i, I,m) to the SHG yield is fa-

cilitated by further introducing auxiliary susceptibilities, which are defined as follows:

↔
χnω,v(i, I) =

↔
χnω,v(i, I, s) +

↔
χnω,v(i, I, b), (4.16a)

where it has been summed over the s and b character of the virtual states. Also,

↔
χnω(i, I) =

↔
χnω,V (i, I) +

↔
χnω,C(i, I), (4.16b)

where we have been summed over the V and C states of the virtual states regardless of

their s or b character. Finally,

↔
χ(i, I) =

↔
χ1ω(i, I) +

↔
χ2ω(i, I), (4.16c)
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Figure 4.2: The c(4× 2) reconstruction of the clean Si(100) surface is shown. The first layer
of atoms corresponds to the alternating dimers (black circles), and the diminishing gray shaded
circles to the 2nd, 3rd, etc layers. Notice the atoms just below the dimer rows in the 3rd layer
(indicated by an arrow), which have an important role in the S1 resonance.

where it has been summed over the 1ω and 2ω transitions. This last susceptibility is

easily interpreted as the i− I contribution to
↔
χ of Eq. (4.13). We see that there are only

four choices for the i− I transitions, i.e. s− s, s− b, b− s and b− b. Equivalent to Eq.

(4.13), we have that

↔
χ =

↔
χ (s, s) +

↔
χ (s, b) +

↔
χ (b, s) +

↔
χ (b, b). (4.17)

As will be seen in the next section, with the help of Eq. (4.17) and Eqs. (4.16), we

can analyze the contributions of the different type of transitions to the SHG radiated

efficiency. We mention that
↔
X from Eq. (4.8), and thus, all the different χ’s defined

above, are dimensionless quantities. To obtain the non-linear susceptibility with the

correct units, one must multiply them by 1/(n0e), which in turn could be written in

m2V−1 or esu cm units.

4.3 Microscopic study of SHG

The equations shown in the previous section, allow us to study the nature of the

different contributions to the non-linear susceptibility
↔
χ. As a very important example,

we analyze the SHG efficiency for a clean Si(100) surface with a c(4× 2) reconstruction,

which is known to be the most stable configuration for low temperature [96]. This

reconstruction is characterized by alternating buckled dimers as shown in Fig. 4.2 [109].
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We follow the approach described in Ref. 45 for the calculation of
↔
χ which uses the

SETB method of Refs. 110 and 100.

The numerical accuracy of the method is basically controlled by the number of planes

N and by the number of special k-points (Nk) for the summation over the 2DBZ that

appears in Eqs. (4.8) and (4.11). The criterion for choosing N and Nk is a good numerical

convergence of the SHG spectra with respect to them; in particular the results shown

below are for N = 16 and for Nk = 64. Results for larger values of N and Nk give very

similar results. In carrying out the Kramers-Kronig transform§, a finite broadening of

25 meV was used; a larger (smaller) broadening will erase (sharpen) some of the small

structures. With this broadening the comparison with experiment is quite good. Another

test to corroborate the numerical consistency of the results could be made by verifying

the following sum-rule of Ref. 111,

I =

∫ ∞
0

dωω=m(Xijk) = 0. (4.18)

We obtain that for the different components of Xijk, 0.07 < I < 0.50 which is very

reasonable for a function that has a large variation as a function of ω. We mention that

we have shifted upward in energy the theoretical curves by 0.24 eV, in order to have a

better correspondence in energy between the calculated and the measured E1 structure.

Differences of this order, often occurring in SETB calculations [112], are due to the

underlying approximations involved in the method [45].

From Ref. 45, we also know that χ‖‖⊥ dominates the p-in P -out SHG spectrum.

Although χ⊥‖‖ and χ⊥⊥⊥ have a magnitude similar to χ‖‖⊥, the prefactors of each com-

ponent in Eq. (2.15) make χ‖‖⊥ the dominant contribution to the SHG radiation. Indeed,

for the frequencies considered here (i.e. h̄ω ∼ 1− 1.7 eV), the wave vector perpendicular

to the surface k⊥(2ω) is much larger than sin θ and k⊥(ω), since it goes through a local

maximum due to the fact that ε(2ω) also goes through its first relative maximum around

2h̄ω ∼ 3.3 eV, which is the well known E1 bulk transition of Si. We mention that this

argument may break down for other energy regions (see below and Fig. 4.3). It is inter-

§The Kramers-Kronig relations follow directly from the causality principle and have played a fun-
damental role in the study of nonlinear response of media. Scandolo and Bassani [111] obtained the
general asymptotic behavior of the second-order susceptibility. From this, three sets of Kramers-Kronig
dispersion relations were obtained, and in turn seven sum rules were found. They can be of great help
in analyzing available experiments, to connect the phase and amplitude of the susceptibility, and to
establish if other contributions exist outside a given frequency range. They are also helpful in assessing
the validity of computational calculations.
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Figure 4.3: We show RPp for Si(100) for an incident angle of 55◦. The dotted line is for the

calculation using all components of
↔
χ through Eq. (2.15a), whereas in the solid line only the

dominant component χ‖‖⊥ is included. Notice the resemblance of both spectra, specially for the
surface resonances S0 and S1, and the bulk resonance E1. The long-dashed (short-dashed) line
is for the case where only χ⊥‖‖ (χ⊥⊥⊥) is included. The χ⊥⊥⊥ case is multiplied by 20. The
experimental data from Ref. 31 (pluses) and Ref. 104 (crosses) are shown with a dashed line
(both sets of data are rescaled in the vertical axis). The inset shows the comparison between

our SETB (solid line) and the ab initio [47] (dotted-line) results using all components of
↔
χ.

The theoretical data have been shifted upward in energy by 0.24 eV (see text for details).

esting to notice that the calculation of Ref. 113, for the SHG spectra of Si(111)H (1× 1)

surface give that both χ⊥‖‖ and χ‖‖⊥, dominate the spectra regardless of the SETB or

ab initio approach used in the calculation of the one-electron energies and momentum

matrix elements required in Eq. (4.8).

The fact that χ‖‖⊥ dominates the SHG spectrum brings about a considerable sim-

plification in the analysis. To wit, we only have to consider the different contributions

to χ‖‖⊥, and relate these directly to RPp. This situation is similar to the linear optical

response of cubic materials, where the observed spectra could be directly related to only

one scalar response function, which is the linear susceptibility [102,108,112]. Nonetheless,

we mention that for SHG it is still necessary to take the absolute value of the complex

rPp (Eq. (2.15)), so in general one has to proceed with care, since neither its real nor

its imaginary part are directly proportional to R. In Fig. 4.3, we show RPp calculated

only through χ‖‖⊥, and the full calculation including all the terms in rPp of Eq. (2.15a).

It is seen that both calculations are remarkably similar, specially below the E1 SHG

resonance. Also, in this figure we have included RPp for the case where only χ⊥‖‖ or

χ⊥⊥⊥ are present. The former spectrum is comparable with the full calculation and the

χ‖‖⊥ case for energies above 4 eV, but for energies around or below E1 the spectra is at

least an order of magnitude smaller. The spectrum for the χ⊥⊥⊥ component is negligible,
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Figure 4.4: The imaginary part of χ‖‖⊥ and its respective χ(s, s), χ(s, b), χ(b, s), and χ(b, b)
components from Eq. (4.17) vs. the two-photon energy are shown. The positions of the surface
resonances S0 and S1, and the bulk resonance E1 are denoted for reference. In the inset we
show the absolute value of χ‖‖⊥ in order to enhance the S1 peak. Notice the different scales in
the vertical axis, where the units of χ are in 10−19 m2V−1.

thus it has been multiplied by 20 in order to show some structure in the figure. The

experimental data from Dadap et al. [31] and from the recent experiment of Mantese et

al. [104] are also shown for comparison. In the theoretical spectra, for the full calcula-

tion and for the χ‖‖⊥ component, we see the bulk E1 resonance of Si at 3.32 eV and two

surface peaks at 2.18 eV (onset) and 3.02 eV, that we called S0 and S1, respectively. We

directly identify E1 and S1 with the experimental results of Ref. 31, and we can assign

the resonance at 1.97 eV of Ref. 104 with S0. It is worth mentioning that both sets of

experimental data agree remarkably well with the theoretical spectra. From Fig. 4.3, it

should be clear that the information contained in χ‖‖⊥ is practically the same as that of

RPp for this energy range.

In the inset of Fig. 4.3 we compare our SETB SHG spectrum with that of the ab

initio calculation of Ref. 47. We notice that E1 and S1 are very well given by both

approaches, and S0 appears at 2 eV for the ab initio spectrum instead of 2.18 eV of

the SETB spectrum. The overall intensity is larger for the ab initio spectrum and the

peaks above E1 and between S0 and S1 are also shifted. As was mentioned above, both

approaches differ below 2 eV. Thus, it should be clear that our SETB sp3s? model is

reliable in the two-photon energy range from 2 eV up to 4.5 eV.
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Figure 4.5: We show the same components of Fig. 4.4 and their partial sums. The top panel
shows χ(s, b) (dashed line), χ(b, b) (dotted line) and their sum (solid line). The middle panel
shows χ(s, b)+χ(b, b) (dotted line), χ(b, s) (dashed line) and their sum (solid line). The bottom
panel shows χ(s, b)+χ(b, b)+χ(b, s) (dotted line), χ(s, s) (dashed line) and their sum (solid
line), which is equal to χ‖‖⊥ shown in the curve of the top panel of Fig. 4.4.

Since only one component of
↔
χ dominates the spectrum, we drop the corresponding

subscript ‖‖⊥ from Eq. (4.16) and Eq. (4.17) to make the notation easier. Also, we

show only the imaginary part of these components; similar information can be obtained

by using the real part or the absolute value. The units of χ are given in 10−19 m2 V−1,

and the reported values are within the experimental ones reported in Ref. 21 for similar

surfaces.

Before we analyze some of the individual transitions seen in Fig. 4.3 the overall

behavior of the susceptibility spectra will be described . Figure 4.4 shows χ‖‖⊥, along

with its different contributions χ(s, s), χ(s, b), χ(b, s), and χ(b, b). Notice that neither

component resembles the total susceptibility, although some particular features could be

ascribed to a single component. As given by Eq. (4.17), the sum of the four different

contributions should give the total result. To see how this is accomplished, Fig. 4.5 shows

the next sequence of sums. In the top panel χ(s, b), χ(b, b) and their sum are shown. We

clearly notice how the addition of these two terms cancels the large resonance just below

3 eV, giving among other peaks a large one around 2.8 eV. In the middle panel, χ(s, b) +

χ(b, b) is repeated and χ(b, s) is shown, along with the sum χ(s, b) + χ(b, b) + χ(b, s).

Again, adding these terms makes the peak at 2.8 eV to be strongly quenched. Finally, in

the bottom panel χ(s, b) + χ(b, b) + χ(b, s), χ(s, s), and χ‖‖⊥ are shown, where the fine
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Figure 4.6: As in Fig. 4.4, the following components are shown: a) χ1ω,C(s, s, s) (solid line),
χ1ω,C(s, s, b) (dotted line); b) χ1ω,V (s, s, s) (solid line), χ1ω,V (s, s, b) (dotted line); c) χ1ω(s, s)
which is the sum of the last four; d) χ2ω,C(s, s, s) (solid line), χ2ω,C(s, s, b) (dotted line); e)
χ2ω,V (s, s, s) (solid line), χ2ω,V (s, s, b) (dotted line); f) χ2ω(s, s) which is the sum of the last
four; g) χ(s, s), which is the sum of c) and f). The main contributions to S0 and S1 are aim
at with a circle.

additive properties of the susceptibility are even more apparent.

Figures 4.6-4.9 show the different terms of Eq. (4.16), which include the 32 different

components of χnω,v(i, I, s), from where we can see how the different auxiliary suscepti-

bilities combine to eventually give the total susceptibility χ of Eq. (4.17). The subtleties

that give the final features in χ, which then gives the SHG resonant peaks, require a

more careful and detailed analysis, which we proceed to give.

We are interested in analyzing the three resonances that have been measured and are

shown in Fig. 4.3. The other resonances are also interesting, and can be analyzed along

the lines that will follow. We discuss S0, S1 and E1 in ascending energy order in the

energy-space domain and ~k-space domain.
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Figure 4.7: As in Fig. 4.4, the following components are shown: a) χ1ω,C(s, b, s) (solid line),
χ1ω,C(s, b, b) (dotted line); b) χ1ω,V (s, b, s) (solid line), χ1ω,V (s, b, b) (dotted line); c) χ1ω(s, b)
which is the sum of the last four; d) χ2ω,C(s, b, s) (solid line), χ2ω,C(s, b, b) (dotted line); e)
χ2ω,V (s, b, s) (solid line), χ2ω,V (s, b, b) (dotted line); f) χ2ω(s, b) which is the sum of the last
four; g) χ(b, s), which is the sum of c) and f), and it is multiplied by 10 below 2.5 eV in order
to show S0. The circles show the components that contribute to S0 and E1.

4.3.1 Energy-space domain

S0 resonance

Figure 4.10 shows χ‖‖⊥, χ(s, s), χ(s, b), χ(b, s), and χ(b, b) from Fig. 4.5, but in a

reduced two-photon energy range. It is seen how χ(s, b) and χ(b, b) show no features

around S0. However, χ(s, b) shows a broad dip around S0 that when it is combined with

the sharp minimum of χ(s, s), gives the well defined S0 dip in the total susceptibility.

Thus, it might be concluded that S0 comes mainly from surface-surface and surface-bulk

transitions. But now, with the help of Eq. (4.15) and Figs. 4.6-4.9, we can further

investigate from which components of χ(s, s) and χ(s, b) this transition is coming from.

From Fig. 4.6(a,d) and Fig. 4.7e is clear to see that only χ1ω,C(s, s, s), χ2ω,C(s, s, s) and

χ2ω,V (s, b, b) contribute to S0. The first two add in such a way that the maximum of the

first partially cancels the minimum of the second, giving the dip at S0 seen in χ(s, s) of

Fig. 4.10. The χ2ω,V (s, b, b) component is also responsible for S0, however we see that

the influence of the other terms that contribute to χ2ω(s, b) make the minimum in χ(s, b)

to be broader and slightly blueshifted from the value of S0. It is mentioned that S0 has

a combination of both diagrams of Fig. 4.1, which means that it involves transitions to
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Figure 4.8: As in Fig. 4.4, the following components are shown: a) χ1ω,C(b, s, s) (solid line),
χ1ω,C(b, s, b) (dotted line); b) χ1ω,V (b, s, s) (solid line), χ1ω,V (b, s, b) (dotted line); c) χ1ω(b, s)
which is the sum of the last four; d) χ2ω,C(b, s, s) (solid line), χ2ω,C(b, s, b) (dotted line); e)
χ2ω,V (b, s, s) (solid line), χ2ω,V (b, s, b) (dotted line); f) χ2ω(b, s) which is the sum of the last
four; g) χ(b, s), which is the sum of c) and f). The circle shows the components that contribute
to S1

virtual conduction and to virtual valence band states.

S1 resonance

From Fig. 4.5 we conclude that the main contributions to S1 come from χ(s, s) and

χ(b, s), and that neither χ(s, b) nor χ(b, b) contribute to S1. However they do contribute

along with χ(b, s) to the dips on both sides of S1 that are seen in the bottom panel of Fig.

4.5. We also see how these two dips are almost canceled by the two corresponding peaks of

χ(s, s), and that S1 in the total susceptibility χ‖‖⊥ results from the dominant contribution

of χ(s, s) over χ(b, s). As for S0 we now look into χnω,v(i, I,m), for all combinations of

n = 1, 2, v = C, V and i, I,m = s, b, to find out the components responsible for S1. It is

found that χ1ω,C(s, s, b) and χ2ω,V (b, s, s) are responsible for S1, as can be seen from Figs.

4.6a and 4.8e respectively. As for S0, S1 involves virtual transitions to the conduction

and to the valence band states.
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Figure 4.9: As in Fig. 4.4, the following components are shown: a) χ1ω,C(b, b, s) (solid line),
χ1ω,C(b, b, b) (dotted line); b) χ1ω,V (b, b, s) (solid line), χ1ω,V (b, b, b) (dotted line); c) χ1ω(b, b)
which is the sum of the last four; d) χ2ω,C(b, b, s) (solid line), χ2ω,C(b, b, b) (dotted line); e)
χ2ω,V (b, b, s) (solid line), χ2ω,V (b, b, b) (dotted line); f) χ2ω(b, b) which is the sum of the last
four; g) χ(b, b), which is the sum of c) and f). The circles show the components that contribute
to E1, for χ2ω,V (b, b, b) see Fig. 4.11.

E1 resonance

Figure 4.11 shows a detail of χ2ω,C(s, b, s), χ2ω,C(s, b, b), χ2ω,C(b, b, b), and χ2ω,V (b, b, b),

along with RPp (including only χ‖‖⊥) for reference. These are the components that dom-

inate E1, all other combinations of χnω,v(i, I,m) are only monotonic functions in the

two-photon energy range shown. In contrast with S0 and S1, the real part of χ2ω,C(s, b, s)

is the one that shows the structure which is partially responsible for E1. For the other

components the imaginary part is enough to correlate their partial contribution to E1.

Therefore, E1 is given by the addition of these four contributions to χ‖‖⊥. We see how

this bulk transition is influenced by the surface through χ2ω,C(s, b, s) and χ2ω,C(s, b, b)

which involve transitions of surface states. Also, in Fig. 4.11 the extremes or inflection

point of the four different contributions are shown with arrows, to remark a very inter-

esting result, i.e. χ2ω,C(b, b, b) and χ2ω,V (b, b, b) have their extremes at higher energies

than χ2ω,C(s, b, b), and this in turn has its extreme at an energy higher than χ2ω,C(s, b, s).

Therefore E1 is shifted from its bulk position by the delicate balance of purely bulk terms

and surface-bulk terms of the non-linear susceptibility.
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Figure 4.10: Detail of Fig. 4.4 for S0, where we show χ(s, s) (thin solid line), χ(s, b) (long-
dashed line), χ(b, s) (short-dashed line), χ(b, b) (dotted line), χ(s, b) + χ(b, s) + χ(b, b) (dash-
dotted line), and the total sum χ‖‖⊥ (thick solid line). Notice that the S0 dip in χ‖‖⊥ is given
by the χ(s, s) and χ(s, b) term.

4.3.2 ~k-space domain

Now that the origin of S0, S1 and E1 in the energy-space domain (through the help

of χnω,v(i, I,m)) have been discussed, we can go back to Eqs. (4.11), and find out the
~k-space domain information concerning these transitions. The way to do it is as follows.

For a given ~k, the energy in Dirac’s deltas appearing in Eqs. (4.11) is fixed, to any of

the values corresponding to S0, S1 or E1. This automatically selects the transitions from

the valence to the conduction state (second and third sums in Eqs. (4.11)). Then, it

is possible to calculate the value of each summand as we add the most internal state

m, which corresponds to the virtual valence or to the virtual conduction (m) states of

Fig. 4.1. This way, we can find out the transitions to virtual states that contribute to

a particular χnω,v(i, I,m) for any given resonance in the SHG spectrum, like S0, S1 or

E1. Even more, from Eqs. (4.11) we can even know if the resonance is coming from the

energy denominators or the momentum matrix elements. This analysis is carried out for

every ~k point in the 2DBZ, and thus the values of ~k which contribute more to Eqs. (4.11)

can also be obtained. It would be convenient to do the ~k-space analysis along the lines

of maximum symmetry in the 2DBZ. However, the ~k points that dominate along these

lines do not coincide with the actual ~k points used in the sum over the 2DBZ, and thus

are not representative of χnω,v(i, I,m). However for completeness, we show in Fig. 4.12



66 Chapter 4. Microscopic study of SHG from semiconductor surfaces

R

Pp

=m(�

2!;V

(b; b; b))

=m(�

2!;C

(b; b; b))

=m(�

2!;C

(s; b; b))

<e(�

2!;C

(s; b; s))

E

1

two-photon energy (eV)

3.53.453.43.353.33.253.2

0.3

0.2

0.1

0

-0.1

-0.2

Figure 4.11: The following components for E1 are shown: <e(χ2ω,C(s, b, s)) (thin solid line),
=m(χ2ω,C(s, b, b)) (dotted line), =m(χ2ω,C(b, b, b)) (short-dashed line), and =m(χ2ω,V (b, b, b))
(long-dashed line). For reference RPp (thick solid line) is shown rescaled on the vertical axis.
The up arrows denote the maxima and the down arrow the inflection point of the components
of χ that contribute to E1. Notice that the surface (bulk) related χ’s have their E1 redshifted
(blueshifted) with respect to RPp E1 (see text).

the energy bands along lines of maximum symmetry. We see surface states in the gap of

the bulk states, along with surface states which are intermixed with bulk states (resonant

states). In what follows, we show the results over the actual values of the ~k points used

in the sum over the 2DBZ. These ~k points are represented in the inset of Fig. 4.12. We

mention again that 64 ~k-points are enough to get good convergence of the results. As in

the previous subsection 4.3.1, we proceed to explain S0, S1 and E1.

S0 resonance

Figure 4.13 shows the energy bands along with the corresponding 1ω and 2ω tran-

sitions, as a function of the ~k points given in the inset of Fig. 4.12. Notice that the

ordinates are given in natural numbers κ corresponding to the (kx, ky) pair in the 2DBZ.

Notice that since h̄ω of S0 is too low there are only two 1ω transitions. Actually for lower

resonances only the 2ω terms would contribute. Figure 4.13 also shows the summands of

Eq. (4.11a) for the 1ω transitions, of Eq. (4.11b) and of Eq. (4.11d) for the 2ω transi-

tions, which add up to χ1ω,C(s, s, s), χ2ω,C(s, s, s), and χ2ω,V (s, b, b) respectively, for the

energy corresponding to S0. These summands have been separated into the xxz and yyz

Cartesian components of
↔
X, needed in Eq. (4.12c) for

↔
χ. We recall that an ijk Cartesian
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Figure 4.12: The band structure for the clean Si(100)c(4 × 2) surface obtained within the
SETB model is shown. The dots (crosses) are bulk (surface) states. In the inset, the lines
of maximum symmetry of the irreducible part of the first Brillouin zone are shown, where the
special 64 κ points are shown for reference (pluses). They are enumerated progressively from left
to right and from bottom to top, starting from the left lower corner. Points κ = 2, 9, 21, 30, 41
(squares) are for S0 and κ = 44, 55, 61 (triangles) are for S1 (see text).

component of
↔
X gives the non-linear (SH) polarization along i for a perturbing field along

j and k. With the dimers of the c(4 × 2) surface oriented along x, Xxxz (Xyyz) gives

the SH polarization parallel (perpendicular) to the dimers for a p-polarized fundamental

field oriented also parallel (perpendicular) to the dimers.

From Fig. 4.13, it is seen that for the C terms, there are several 2ω transitions along

κ which carry very little or no weight from their corresponding summands, and only

two of these transitions are actually important. They coincide in κ value with the 1ω

transitions, which show similar weights. We see that for κ = 2 the xxz term of the 2ω

transition almost cancels the xxz of the 1ω transition, and that for κ = 9 these two

contributions add. Also, at this κ, the yyz components of the 1ω and 2ω terms cancel

each other. Furthermore, it can also be shown that the resonant contribution comes

from the energy denominators of Eqs. (4.11a) and (4.11b), and not from the momentum

matrix elements. From the 2DBZ shown in Fig. 4.12, it is seen that κ = 2, 9 are near

the Γ point and along ΓY and ΓX directions, respectively, although only κ = 9 gives a

finite contribution.

In contrast with χ1ω,C(s, s, s) and χ2ω,C(s, s, s), the summands of Eq. (4.11d) which
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Figure 4.13: For S0, we show the band structure along the 64 κ points shown in the inset of
Fig. 4.12, along with the 1ω s−s transitions (thick lines with pluses), 2ω s−s transitions (thin
lines with squares), and s− b 2ω transitions (thin lines with open circles). The dots (crosses)
are bulk (surface) states. The lower panels show the corresponding value of the xxz component
(with a solid line as guide to the eye) and the yyz component (with a dotted line as guide to
the eye), of the summands of Eq. (4.11a) for χ1ω,C(s, s, s), Eq. (4.11b) for χ2ω,C(s, s, s), and
Eq. (4.11d) for χ2ω,V (s, b, b).
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add up to χ2ω,V (s, b, b), show a different behavior as a function of κ. The value of the

summands is distributed over the full 2DBZ with the largest contributions well inside

the BZ, and the xxz and yyz add each other with the same sign. It is also seen that

for a given κ there are several s − b 2ω transitions across the gap which contribute to

the susceptibility. Finally, the resonant contribution comes from the momentum matrix

elements of Eq. (4.11d) and not from the energy denominator as in the previous case.

Once we have identified the eigenstates among which the transitions sketched in

Fig. 4.1 take place for S0, we can go further down into the calculation of χ, and find

out the nature of their associated wave functions. The three states (i, I, v) at κ = 9 for

χ1ω,C(s, s, s) and χ2ω,C(s, s, s) have the following nature: (i) the wave function is strongly

localized in the top and bottom atoms of the dimer with very little contribution from

the atoms below the dimer; (ii) the i state (valence state) has dominant pz-like orbitals

and the I state (conduction state) has dominant py-like orbitals and both are strongly

localized in the top atom of the dimer; (iv) on the other hand, the m state (virtual state)

has an admixture of pz-like and px-like orbitals for the top atom of the dimer, whereas it

shows a dominant pz-like orbital for the bottom atom of the dimer. We mention that the

the transitions to the virtual state m are dominant for the states which are separated by

h̄ω from their I states. On the other hand, for the analysis of χ2ω,V (s, b, b) we sample

over some representative values of κ (like κ = 21, 30 and 41, see Fig. 4.12), to obtain

the following information: (i) the i state is strongly localized in the top Si of the dimer

with an admixture of s and pz orbitals, (ii) the I state, being a bulk state, has its wave

function spread over all atoms, but it has a large amplitude at the bottom Si of the dimers

with an admixture of py and pz orbitals, (iii) for the m state, which is now a valence

state, there are several states that contribute to the susceptibility, in contrast with the

previous case, where there is only one m state for each i− I electronic transition. Again,

by sampling on these many states we find dominant px and pz orbitals, and that their

wave functions are spread over all atoms, in agreement with their bulk character, but

there is no atom whose wave function dominates, as it is for the I state.

As a result of the above behavior, the electron undergoes a 1ω transition among

surface states that are localized to within the dimer atoms (see Fig. 4.2). For the 2ω

transitions there are two possibilities, the electron may stay within the surface states

of the dimer atoms, or it may also undergo transitions from the surface states of dimer

atoms to the subsurface atoms as the I and m states are bulk states. In Fig. 4.14, we

show a sketch of the transitions involved in S0.
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Figure 4.14: We show a sketch of the transitions involved in S0. The Si atoms are shown
by solid circles and the dimer bond by a thick solid line. The upper diagram corresponds to
the dimer confined transitions, and the lower diagram to the transitions from the top Si of the
dimer to a Si in the second atomic plane. The diagrams, as in Fig. 4.1, indicate the type of ω
transition and the bulk or surface character of the states involved.

From the χnω,v(i, I,m) components of χ, we see how they involve different electronic

processes which contribute to SHG. In these transitions the electron samples different

symmetries of the wave function for the 1ω and the 2ω processes, and it is mostly confined

to within the dimer and subsurface region.

S1 resonance

As for S0, figure 4.15 shows the transitions involved in S1 in a similar fashion, where

κ only ranges from 30 to 60, since the other points have transitions with no weight. We

notice that only a few κ points contribute to χ1ω,C(s, s, b) for the 1ω transitions and to

χ2ω,V (b, s, s) for the 2ω transitions. For the 1ω transitions the yyz component of
↔
X dom-

inates over the xxz component and they partially cancel each other, whereas for the 2ω

transitions, only the yyz component contributes. The two dominant κ points for the 2ω

transitions are close to X and Y ′ along the XΓ and Y ′X directions, respectively, however

for the 1ω transitions, the dominant κ points are well inside the 2DBZ (see Fig. 4.12), as

it is for the χ2ω,V (s, b, b) component of S0. For S1, the resonant contribution comes from

the energy denominators of Eqs. (4.11a), (4.11d), and not from the momentum matrix

elements.
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Figure 4.15: For S1, we show the band structure from κ = 30 to 60 as these are the values
of κ for which the transitions have finite contribution. We also show the 1ω s − s transitions
(thick lines with pluses), and 2ω b− s transitions (thin lines with squares). The dots (crosses)
are bulk (surface) states. The lower panels show the corresponding value of the xxz component
(with a solid line as guide to the eye) and the yyz component (with a dotted line as guide to
the eye), of the summands of Eq. (4.11a) for χ1ω,C(s, s, b), and Eq. (4.11d) for χ2ω,V (b, s, s).
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We take some of the dominant κ values from the bottom panel of Fig. 4.15 to

investigate the nature of the wave functions involved in S1, as it was done for S0. For

κ = 44 which is related to a 1ω transition, it is found that the wave function for the

valence states is concentrated in the top atom of the dimers, whereas for the conduction

states is larger for the bottom atom of the dimers. The wave function of the former has

an admixture of px and pz orbitals, and that of the latter has dominant pz orbitals. The

bulk atoms have negligible wave functions for conduction and valence states. For κ = 55

and 61, which are related to 2ω transitions the behavior is as follows. The valence states

wave functions have similar values for the 4 atoms of the unit cell at the second atomic

plane (see Fig. 4.2) and all have dominant pz orbitals. On the other hand, the conduction

states wave functions have a dominant contribution for the lower atom of the dimers, with

pz orbitals, but also equally large wave functions exists for the atoms of the 3rd plane

which are directly below the dimer rows (see Fig. 4.2). These two atoms display px and

s∗ dominant orbitals. Although the wave function associated to valence states are finite

for the bulk atoms, the conduction states have negligible wave functions. In this way,

the transitions concentrate to within the surface and subsurface atoms. Therefore, it is

concluded that for S1 the 1ω transitions that contribute to χ1ω,C(s, s, b) are mainly from

the top to the bottom Si in the dimers, whereas the 2ω transitions that give χ2ω,V (b, s, s)

are mainly from a Si in the second plane to either a bottom Si of the dimers or a Si in the

3rd plane just below the dimer rows. In Fig. 4.16, we show a sketch of the transitions

involved in S1. In a space-extended view of the wave function, these transitions will be

among the electronic states of the corresponding bonds, i.e. dimer bonds, back-bonds and

bulk Si-Si bonds. This sort of real-space visualization of the wave-function (or its charge

density) has been used in Ref. 12 in order to understand the linear optical behavior of a

Si(111)2× 1 surface.

E1 resonance

Figure 4.17 shows for E1 the summands of Eq. (4.11b) for the 2ω transitions that

add up to χ2ω,C(s, b, s), χ2ω,C(s, b, b), and χ2ω,C(b, b, b), along with the summands of

Eq. (4.11d) which give χ2ω,V (b, b, b) vs. κ. The summands are separated into their

xxz and yyz components, as in Fig. 4.13 for S0 and Fig. 4.15 for S1 however, for E1

the energy bands and 2ω transitions are not shown since there are many of them and

will not display clearly. From Fig. 4.17, we see that the summands of χ2ω,C(s, b, s)

and χ2ω,C(s, b, b) which involve surface states, have only a few dominant terms, whose
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Figure 4.16: As in Fig. 4.14, we show a sketch of the transitions involved in S1. The upper
diagram corresponds to the dimer confined transitions, and the lower diagram to the transitions
from the Si in the second atomic plane to either the bottom Si of the dimer or the Si in the
third atomic plane just below the dimer (see Fig. 4.2).

xxz and yyz components tend to cancel each other exactly. However, the summands

of χ2ω,C(b, b, b) and χ2ω,V (b, b, b) which only involve bulk states, have much more finite

terms spread over the full 2DBZ, where the almost exact cancellation of the xxz and yyz

contributions is not as well defined as for the terms that involve surface states. Indeed,

as a function of κ, the xxz component is very small where the yyz component is large,

and vice versa. This marked difference from surface or bulk states has to do with the

fact that there are much more bulk states, and thus far more available transitions. For

E1, the resonant contributions to the summands of χ2ω,C(b, b, b) and χ2ω,V (b, b, b) come

from the momentum matrix elements, in contrast with χ2ω,C(s, b, s) and χ2ω,C(s, b, b) for

which they come from the energy denominators as it is for some terms of S0 and all the

contributions to S1. This means that for S1 the virtual transitions from the intermediate

state I happen to many virtual states m (as it is for the χ2ω,V (s, b, b) term of S0), whereas

for S0 these transitions only happen between states that are separated in energy by h̄ω.

Recall that this apparent energy conservation is not physically required, only the real

transition between valence (i) and conduction states (I) across the gap need to conserve

energy, as indicated by the Dirac deltas in Eqs. (4.8) and (4.11). Notice that there are

no contribution to E1 coming from 1ω transitions. The contribution from χ1ω,V (b, s, b)

near E1 is cancelled by that of χ2ω,V (b, s, s) as can be seen from Fig. 4.8. Taking some

values of κ for which the summands of Fig. 4.17 are largest, we conclude that the wave

functions for the valence states are evenly distributed among all atoms in the unit cell
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Figure 4.17: For E1, we show the xxz (solid line) and yyz (dotted line) components of the
summands of Eq. (4.11b) that add up to a) χ2ω,C(s, b, s), b) χ2ω,C(s, b, b), c) χ2ω,C(b, b, b),
and of Eq. (4.11d) that gives d) χ2ω,V (b, b, b).

for surface and bulk layers, and that they have a mixture of px, py and pz orbitals. On

the other hand, the wave functions for the conduction states have strong maxima for the

lower Si of the dimers with strong pz orbitals. Therefore, it might be concluded that for

E1, transitions among the bulk and the lower atoms of the dimer contribute to the SHG

signal for E1. In Fig. 4.18 we show a sketch of the transitions involved in E1. It is quite

interesting to point out how E1, which is a bulk resonance, is affected by the surface

properties, and how the surface itself differs from the bulk, thus breaking the inversion

symmetry and readily allowing SHG. The delicate balance among the different terms

that enter
↔
χ, ultimately give the origin of the resonances seen in the SHG spectrum.

4.4 Conclusions

We have applied a microscopic formulation to analyze the different terms that contribute

to the total non-linear susceptibility with which we calculate SHG. As an example the

Si(100)c(4× 2) surface was analyzed. We have shown within our formalism that taking

into account only the χ‖‖⊥ component of the susceptibility tensor in the calculation of

SHG yields a spectrum that well resembles the experimental results in the frequency
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Figure 4.18: As in Fig. 4.14, we show a sketch of the transitions involved in E1. The upper
diagram corresponds to the transitions from the Si in the second atomic plane to the bottom Si
of the dimer, and the lower diagram to the transitions from any Si in the second atomic plane
to any Si in the third atomic plane.

range from 2 to 4 eV. Classifying the 1ω and 2ω contributions of χ‖‖⊥ into their surface

or bulk character we discussed the energy-space and ~k-space features of the S0, S1, and

E1 resonances. From this analysis and within our model we have concluded the following.

The S0 resonance comes from 1ω and 2ω surface-surface transitions across the gap,

whose transitions are to surface virtual states in the conduction band, and it also comes

from 2ω surface-bulk transitions across the gap, whose transitions are to virtual bulk

states in the valence band (see Fig. 4.14). The transitions occur from the top to bottom

Si of the dimer, however the transitions to virtual bulk states in the valence band that

are part of the surface-bulk contribution, could be to subsurface atoms.

The S1 resonance has its origin in 1ω surface-surface transitions across the gap, whose

transitions are to virtual bulk states in the conduction band, and in 2ω bulk-surface

transitions across the gap, whose virtual transitions are to virtual surface states in the

valence band. The 1ω transitions are from the top to the bottom Si of the dimer, and

the 2ω transitions are from a Si in the second plane to either the bottom Si of the dimer

or a Si in the third plane just below the dimer rows (see Fig. 4.16).

The bulk E1 resonance has more contributions than the previous two surface peaks,

but only from 2ω transitions (see Fig. 4.18). They are given by, surface-bulk transitions
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across the gap whose transitions are into surface and bulk conduction virtual states,

and bulk-bulk transitions across the gap whose transitions are into bulk conduction or

valence virtual states. Since E1 is a bulk resonance, it is important to remark that it is

strongly affected by the surface, i.e. the E1 transitions are among the bulk atoms and the

lower atoms of the dimer. This fact also shows how the surface breaks the bulk inversion

symmetry readily allowing dipolar SHG.

From the above conclusions, we can understand within our approach some of the

general features seen in SHG from this surface when it is covered by other species of

atoms. For instance, as a function of H termination of the surface, the dimer first

symmetrizes and then breaks, disrupting the dimer related states, and thus quenching

the surface resonances. However the E1 resonance, being less sensitive to the dimer as

it involves transitions among subsurface atoms, does not disappear completely. This

is the behavior seen in the experimental [31] and in the theoretical spectrum [45]. On

the other hand, B adsorption on this surface shows a very interesting behavior for the

E1 resonance. Since B goes to second layer Si sites, its influence is not of quenching,

but rather redshifting the position of E1 and increasing its intensity, since it interacts

with the subsurface atoms as well as the bottom Si of the dimer. In Chap. 5 theory

and experiment are compared for such a system. A similar analysis using the model

presented in this chapter could be applied for other surfaces. We remark that such

analysis could be carried out using different approaches to calculate the one-electron

energies and momentum matrix elements required for the evaluation of the non-linear

susceptibility.

From the analysis carried out within the present model, it should be clear how the fine

interplay of surface and bulk 1ω and 2ω transitions gives the observed SHG spectrum.

Also, we emphasize that the bulk or surface nature of a electronic state does not imply

that it belongs to a surface or bulk atom completely, rather that its wave function is

distributed among surface, subsurface and bulk atoms. The influence of both surface

and bulk clearly shows up in the different terms of the susceptibility that give the SHG

spectra, which is a statement of the known fact that the surface states are bulk perturbed

and vice versa. We mention that further investigation of the present model could be made

along the following lines. For instance, one can try to explore the improvement of the

SETB method itself along the lines of Ref. 114, or Ref. 115 where the optical matrix

elements are computed directly, instead of being adjusted as in this thesis [100, 110].

Also, the alternative approach which uses the longitudinal gauge for the calculation of
↔
χ,
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and thus splits it into inter-band and intra-band contributions [116], should be compared

with the present formalism which uses the transverse gauge with no intra-band processes.

This comparison will allow us to asses the role of the intra-band contributions to SHG

in semiconductors. Finally, as we mentioned before, proper screening of the electric field

near the surface, local field and excitonic effects should be incorporated into the theory

of SHG to have a full understanding of it. Our approach is a first successful step towards

this aim.
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Chapter 5

SHG of H-adsorbed and B-doped

Si(100) surfaces

5.1 Introduction

The adsorption of foreign atoms on a surface modify its atomic structure and thus

its physical properties. These adsorbates can act as a surfactant or can passivate the

surface. Therefore they play an important role in surface growth by affecting the kinetics

and dynamics of adsorbate interactions with semiconductors surfaces.

Recently surface specific optical techniques such as second harmonic generation (SHG)

have been applied to study adsorbed-covered and doped surfaces [29,31–33,103]. Due to

the technological importance of the Si surfaces, the adsorption and desorption of H on Si

surfaces have been studied experimentally [29,31–33,117–119] and theoretically [120–123]

for the good characterization of Si surfaces and for the control on the epitaxial growth of Si

films by chemical vapor deposition (CVD). H passivation of silicon-based devices reduces

the number of active dangling bonds that act as charge and impede device operation.

For these reason the interaction of H on Si surfaces, in particular the (100) surface, has

been widely studied.

It is now established that when the Si(100) surface is passivated with H the tem-

perature at which the dosing occurs determines the degree of adsorption of H on the Si

surface (H/Si). This adsorption may change the surface reconstruction (see. Fig. 5.1)

79
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Figure 5.1: Schematic diagram of the possible structures of the H-adsorbed Si(100) surface.

at the surface as a 1×1, 2×1 or 3×1 phase [124]. At low temperatures and for cover-

ages above 1 ML a 1 × 1 surface (ideal phase) forms on which each surface Si atom has

two Si-H bonds. Above 600 K and for coverages less than 1 ML the 2×1 reconstruction

which corresponds to the monohydride phase forms. The dihydride phase is formed by

destroying surface dimers and changing the reconstructed 2× 1 phase to the 1× 1 phase.

The 3×1 phase consists of alternating monohydride and dihydride units. It forms for

coverage values ∼ 1.3 ML and exist only on specially prepared surfaces [124].

Dadap et al. [31] and Höfer [32] reported measurements of SHG generated in reflection

from Si(100) surfaces as a function of H coverage and temperature. They found a shift

of the E1 peak of Si as a function of H coverage: the E1 peak redshifts by 0.1 eV in

going from the clean surface to the monohydride phase, and then there is a blueshift of a

smaller magnitude when proceeding towards the dihydride phase. Based on these findings

Dadap et al. [31] proposed that surface electric fields associated with dimer formation and

tilting are the dominant source of p-polarized SHG from the clean Si(100)2×1 surface, and

that monohydride termination quench this contribution through chemical modification

of the surface. DC surface fields approximately to 106 V/cm arise within the top few

atomic layers of the clean 2×1 Si(100) surface due to the formation of surface dimers,

even symmetric ones, induces electron transfer from the bulk into the uppermost atomic

layers [31]. Jahn-Teller distortion (tilting) of the dimers cause additional charge transfer

into the upper Si atom of the dimer, resulting in even stronger surface fields [83]. Thus

surface dc-electric-field induced second second harmonic (SEFISH) polarization plays a

major role in the SHG spectroscopy at Si interfaces [31, 33]. and differs from the bulk
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electric-field induced second harmonic (EFISH) polarization in which the dc-electric field

penetrates a macroscopic distance determined by the bulk doping concentration [33,125].

In this chapter, we include a suitable surface localized static electric field in the

calculations of SHG at the Si(100) surface. By the inclusion of this field we will see that

the E1 peak shows the correct experimental behavior. This suggests the presence of built-

in electric fields whose strength depends on the H coverage and are strongly localized in

the subsurface region. A surface electric field ~Edc(z) = Edc
z (z)ẑ, with z perpendicular to

the surface, would be associated with the dimer bond formation of the clean surface as

charge gets transferred to the top Si atom of each dimer [83]. The charge redistribution

produces a large field strength in some portions of the immediate subsurface region. As

the surface is covered with H, the charge moves back into the bulk, thus quenching the

surface dc field, till it must disappear for the ideally terminated surface, i.e. the dihydride

phase.

The microscopic formulation of Chap. 4 is now used to calculate the second harmonic

(SH) spectra of Si(100) in the presence of surface localized dc-electric field. Adsorption

of H and incorporation of B on the surface is analyzed. On one hand, we will see that

the surface-allowed E1 resonance for clean and H covered surfaces shift as a function

of the dc field in agreement with experimental results. On the other hand, we will

use optical second SHG spectroscopy to probe Si(001) following thermal decomposition

of diborane at the surface. Incorporation of B at second-layer substitutional sites at

H-free Si(001) intensifies and redshifts the E1 SHG spectral peak, while subsequent H

termination further intensifies and blueshifts E1, in sharp contrast with the effect of bulk-

B-doping or non-substitutional B. Ab initio pseudopotential (PP) and semi-empirical

tight-binding (SETB) calculations independently reproduce these unique trends, and

attribute them to the surface electric field associated with charge transfer to electrically

active B acceptors, and rehybridization of atomic bonds. Part of this work is reported

in Refs. [34,126,127].

We describe, in Sec. 5.2, two possible formulations that could be followed to calculate

the SHG efficiency at Si(100) surfaces in the presence of a surface dc-electric field. The

SHG experiments at the H-absorbed Si(100) surface are described in Sec. 5.3 and spectra

of SHG as a function of H adsorption is reported in Sec. 5.4. The SHG as a function

of H coverage on the B-doped Si(100) surface (B/Si) is analyzed through Secs. 5.5-5.7.

Finally in Sec. 5.8, we give conclusions.
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5.2 Effect of surface dc-electric field on SHG

From the theoretical side, two alternative formulations could be used, in principle,

to calculate the effect of a surface localized dc-electric field, ~Edc on SHG. We start from

writing the non-linear second-order surface induced polarization∗ as [31]

pi(2ω, z) = χijk(ω)Ej(ω)Ek(ω)δ(z) + χijkz(ω)Ej(ω)Ek(ω)Edc
z (z) (5.1)

where the first term on the right represents a polarization sheet commonly used to de-

scribe the dipolar SH field intrinsic of a surface, with χijk its corresponding non-linear

susceptibility. The second term is induced by the surface localized dc-electric field Edc
z (z)

and is modulated by the fourth-rank tensor χijkz. Both terms are driven by the exter-

nal electric field ~E(ω) at the fundamental frequency ω. In order to obtain the effective

polarization of the surface we should integrate Eq. (5.1) as

pi(2ω) =

∫ ∞
−∞

pi(2ω, z)dz (5.2)

= χijk(ω)Ej(ω)Ek(ω) + χijkz(ω)Ej(ω)Ek(ω)E0Leffη,

where we have assumed Edc
z (z) = E0f(z) with Leff its effective depth, η =

∫∞
−∞ f(ζ)dζ.

Therefore we can write Eq. (5.2) as

pi(2ω) = χeffijk (ω)Ej(ω)Ek(ω), (5.3)

with an effective non-linear susceptibility given by

χeffijk = χijk + λχijkz (5.4)

and λ = E0ηLeff . According to the estimations of Ref. 31 λ is less than one.

Energy minimization calculations that predict a symmetric dimer structure indicate

electron enrichment of approximately e/6 in the top two atomic layers, implying a surface

charge density σ = 10−5 C/cm2 and field strength of the order of E0 ∼ σ/ε ∼ 104 kV/cm

(with ε ≈ 11.9) immediately beneath the surface [31]. Calculations that predict a tilted

dimer indicate an even larger transfer of approximately e/3 into the upper Si atom of

each buckled dimer, implying proportionately larger charge density and field strength

∗An equivalent expression including static bulk fields describes the EFISH generation arising when a
dc-electric field is applied externally to the sample [125].
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in some portions of the immediate subsurface region, depending on the details of the

charge redistribution. Similar E0 values and vertical extent are implied by the decrease

of 0.35 eV of the ionization energy of the Si(100)2×1 surface, which is observed when

monohydride termination passivates and symmetrizes the surface dimer and quenches

the surface field. This implies [31] E0Leff = 0.35V .

As we see in Eq. (5.4), the effective susceptibility requires the calculation of the

third-order susceptibility. This calculation is performed following perturbation theory

just as we did in obtaining the second-oder susceptibility Xijk in Sec. 4.2. Similarly to

Eq. (4.5), we apply perturbation theory to obtain the third order induced current as

Ji = < ψ(0)|Ĵi|ψ(3) > + < ψ(3)|Ĵi|ψ(0) >

+ < ψ(1)|Ĵi|ψ(2) > + < ψ(2)|Ĵi|ψ(1) >, (5.5)

where the wave function |ψ(n) > to n-th order is given by Eq. 4.5. After substitution

of Eq. (5.5) into Eq. (4.3), we could obtain the corresponding expression for the third-

order non-linear susceptibilities [128] which we do not give explicitly because they are

cumbersome. Thus, we just mention that such an expression contains terms proportional

to δ(E − h̄ω), δ(E − 2h̄ω) and δ(E − 3h̄ω) similarly to Eq. 4.8, which contains terms

proportional to δ(E− h̄ω) and δ(E− 2h̄ω). In Fig. 5.2 we give an sketch, similar to that

of Fig. 4.1, of the possible transitions 1ω, 2ω and 3ω involved in χijkz. These transitions

could take place to surface or bulk virtual states in the conduction or valence band.

Due to the cumbersome character of the calculation of χijkl, we follow an alternative

method to calculate the optical response of a surface in the presence of a surface localized

field, which consists in adding to the original SETB unperturbed hamiltonian Ĥ0, the

electrostatic potential produced by ~Edc(z). Within the electric dipole approximation,
~Edc(z) is included into Ĥ0 as a potential energy dependent of z as

ϕ̂(z) = eV (z) (5.6)

with
dV (z)

dz
= −Edc

z (z) (5.7)
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Figure 5.2: We show an sketch of the possible 1ω, 2ω and 3ω transitions involved in the
third-order non-linear susceptibility χijkz.

and calculate the ground state eigenvalues and eigenfunctions of this new hamiltonian

Ĥ = Ĥ0 + ϕ̂(z) (5.8)

with which one calculates χijk. Now, in this approach the key ingredient for the calcula-

tion are the matrix elements of ϕ̂(z).

We use a tight-binding (TB) approach to calculate the energy and momentum matrix

elements required in Eq. 5.8. Then, for a general potential of the form ϕ(z) = ϕof(z), we

have that the matrix elements between orbitals n and n′ situated at atoms with positions

R and R′ are given by

< nR|ϕ(z)|n′R′ >= ϕ0 < φnR|f(z)|φn′R′ > (5.9)

where the TB wave functions are

φnR =
∑
R

exp(i~k ·R)un(R), (5.10)

with ~k the wave vector and un(R) a periodic function. Substituting Eq. (5.10) into Eq.
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(5.9) and taking z → z +Rz, where Rz is the atomic z-coordinate, we obtain

< nR|ϕ(z)|n′R′ >= δRR′ϕo < un(R)|f(z +Rz)|un′(R) >, (5.11)

where we have neglected the inter-atomic matrix elements. Expanding the function

f(z + Rz) in a power series of z around z = 0 and limiting to the first-order term, we

have

< un(R)|f(z +Rz)|un′(R) >= f(Rz)δnn′+ < un(R)|z|un′(R) >
df

dz

∣∣∣∣
z=0

. (5.12)

For a constant dc-electric field Edc
z = E0 whose corresponding potential is given by

ϕ(z) = −(ϕo/aB)z, (5.13)

and f(z) = −z, we have

< nR|ϕ(z)|n′R′ >= −(Rzδnn′ + znn′)(ϕo/aB)δRR′ (5.14)

where

znn′ =< un(R)|z|un′(R′) >, (5.15)

and we have normalized with the Bohr radius aB. Whereas, for a dc-electric field that

decays exponentially,

φ(z) = φoe
−z/Leff , (5.16)

and f(z) = exp (−z/Leff ), thus

< nR|ϕ(z)|n′R′ >= (δnn′ − znn′/Leff )δRR′ ϕoe
−Rz/Leff . (5.17)

To calculate the intra-atomic matrix elements znn′ needed in above equations, we use a

semi-empirical approach within our TB formalism. For the SETB approach we use a sp3s?

basis, with which the different parameters involved are obtained by a fit to bulk Si optical

properties. For znn′ , the only elements different from zero are < s|z|pz >= 0.27 Å, and

< s?|z|pz >= 1.08 Å [110]. The matrix elements of the momentum operator, calculated

through ~̂p = im[Ĥ, ~̂r]/h̄, are unaffected by ϕ(z) since it commutes with ~̂r. The addition

of Eqs. (5.14) or (5.17) to the SETB hamiltonian Ĥ0, allows to calculate the ground

state of the system in the presence of Edc
z (z), from which the more simple expression of

χijk could be readily calculated through Eq. 4.8.
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Figure 5.3: Isothermal p-in/P -out SHG. Experimental spectra from Ref. 31 of 8 isosteric
Si(001) surfaces with H coverage of 0, 0.12, 0.3, 0.51, 0.75, 1 and 1.5 ML from top to bottom
respectively at room temperature. We observed a quenching, redshift and line distortion of the
E1 resonance as coverage increases from 1.0 to 1.5 ML and blueshift as coverage increases from
1.0 to 1.5 ML. In order to follow the shift and quenching of the E1 resonance we have indicated
with a circle the maxima of the spectra.

5.3 SHG experiments at H-adsorbed Si(100) surface

(H/Si)

Experimental studies of H adsorption at Si(100) surface have shown the importance

of surface SEFISH polarization in the SHG spectroscopy at Si surfaces [29–31, 33, 125].

Daum et. al. [29, 30] proposed that the SH E1 peak at clean Si(100)2×1 acquires its

amplitude and redshifting primarily from near-surface vertical tensile strain induced by

dimerized reconstruction and by this interpretation they explained the quenching of the

resonance by H coverage. On the other hand Dadap et al. [31] explained the origin of the

E1 peak at Si(100)2×1 by the surface dc-electric field that arises from the charge transfer

accompanied with dimer bond formation and tilting rather than from the near-surface

strain field.

The SHG experiments to obtain SHG measurements from a Si(100) surface is de-

scribed in this section. The experiments were done by Dadap et al. [31] at the Univer-

sity of Texas at Austin. With this experiments, Dadap et al. [31] reported isothermal

and isosteric spectroscopic measurements and real time fixed wavelength measurements
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during heating, H desorption and epitaxial growth (time resolution < 0.1 s). The SH

spectroscopy experiments were performed in an ultra-high vacuum (UHV) deposition

chamber, equipped with a quadrupole mass spectrometer and a reflection high-energy

electron diffraction (RHEED) apparatus. The deposition chamber is adjoined via a load-

lock to a multitechnique surface analysis chamber (base pressure 8 × 10−11 Torr) with

capabilities for Auger electron spectroscopy (AES), x-ray photoelectron spectroscopy

(XPS), temperature-programmed desorption (TPD), and high-resolution electron-energy-

loss spectroscopy (HREELS). The deposition chamber is pumped by a 450-1/s turbo-

molecular pump to a base pressure < 1 × 10−9 Torr (the low-pressure limit of the

Bayard-Alpert gauge), with no special provisions for pumping H, because of its low

(< 10−6) initial sticking coefficient on Si(100). This chamber is also equipped with a

Roots blower, capacitance nanometer, and exhaust valve for operation at pressures up to

100 Torr. The deposition chamber is routinely exposed to large doses of silane and disi-

lane during CVD growth, which helps maintain a low H2O partial pressure (via gettering

at the chamber walls) of approximately 5× 10−11 Torr, estimated from residual gas anal-

ysis. The bare silicon surface can be maintained for about 15 min under these conditions

without any accumulation of impurities detectable by (XPS) and TPD (< 0.01 ML). A

typical SH spectrum was acquired in approximately 3 min.

The oriented p-type Si(001) substrate (miscut less than 1o) was radiantly heated

from the backside with a pyrolytic boron nitride (PBN) encased graphite heater for

temperatures less than 1050 K. For higher temperatures, a coiled tungsten filament was

inserted between the PBN heater and the backside of the crystal (using a linear motion

device) to achieve electron beam heating to temperatures as high as 1400 K. Temperature

was routinely monitored via a thermocouple, mounted to the sample holder, that was

previously calibrated to the crystal temperature (to within ±20 K). To achieve better

accuracy in the temperature measurement (to within ±5 K), the experiments used a

K-type thermocouple, spot welded to the inside of a thin roll of tantalum foil, then

inserted into a 0.5 mm hole through the crystal and fastened with a drop of zirconia-

based adhesive (Aremco, Ultratemp 516). The native oxide was removed as SiO by

1 K/s heating to 1275 K, followed by 1 K/s cooling to ambient. This procedure has

been shown to produce an atomically smooth 2× 1 reconstructed surface as verified by a

characteristically sharp, streaky RHEED pattern, with no impurities detectable by (XPS)

and AES. Our SH measurements were performed on an undoped, epitaxial silicon layer

that was grown by UHV-CVD using disilane (Airco, electronic grade mixture consisting of

4%-Si2H6/balance He) at 900 K to bury any trace contaminants present at this surface,
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and conceal the initial interface far beyond the extinction length of the SH radiation

(typically a 0.3µm layer was grown). As surface contaminants accumulated over the

course of several days, the epitaxial growth procedure was routinely repeated to recover

a pristine surface, with no degradation in the crystallinity nor surface roughness, as

monitored by the RHEED pattern.

H coverage was controlled by exposing the bare crystal to atomic H produced by

cracking molecular H on a 2000 K tungsten filament, placed in line-of-site with the crystal

face at a distance of 3-4 cm. The H was purified by slowly filling an evacuated, liquid-

nitrogen-cooled U tube to a pressure of 50 psi (gauge), before backfilling the chamber

to the desired pressure, resulting in an H2O partial pressure rise in the chamber to no

more than 2 × 10−10 Torr at H pressures as high as 5 × 10−4 Torr. A resistively heated

crystal and a line-of-site QMS were installed in the deposition chamber to quantify H

coverages by TPD, while the SH spectroscopy experiments were performed concurrently

on the same crystal. By normalizing the m/e 2 TPD peak areas to the area under the

saturated monohydride peak, H coverages in ML were obtained with a relative accuracy

of approximately 5%. Cracking of background impurities (CO, H2O) was minimized by

keeping the filament hot for no more than 30 s for each dose and varying the pressure to

control the exposure. A 15 000 L (5× 10−4 Torr, 30 s) molecular H exposure produced a

saturation coverage of 1.5 ML at 375 K. H exposure was performed at no less than 375 K to

minimize the formation of etch products that might lead to surface roughening. Following

each exposure and SH spectroscopy experiment, the TPD heating program annealed the

crystal at 1050 K to recover the smooth, double-domain (2×1) reconstructed surface.

Unamplified Ti:sapphire laser pulses of duration 120 fs, wavelength range 705-935 nm

spectral bandwidth 5-10nm [full width at half maximum (FWHM)], average power 150 mW,

and repetition rate 76 MHz were focused through a fused-silica viewpoint onto the (001)-

oriented silicon crystal in vacuo at a 55o angle of incidence. The reflected SH signal

was monitored through a second optical port using a gated photon-counting system. A

fraction of the fundamental laser beam was split off outside the chamber to generate

a SH reference signal from a crystalline quartz plate, which normalized against drifts

in average laser power or pulse duration data acquisition. Transient surface heating by

individual laser pulses was negligible (< 0.5 K at 0.5 mJ/cm2 per pulse). However, cu-

mulative surface heating by the 76-MHz pulse train caused a steady-state temperature

difference as high as 40 to 50 K between the sample spot on the crystal and the thermo-

couple, mounted several mm away, when the laser operated at 200 mW average power.
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This extra heating noticeable perturbed H desorption kinetics, which provided in situ

calibration of the temperature offset. Attenuation of the incident beam to < 50 mW

with neutral density filters minimized laser-induced heating while maintaining adequate

SH signals levels for most measurements.

For surface spectroscopy, the laser wavelength was tuned between 705 and 820 nm in

pulse bandwidth (5-10 nm) increments in less than 3 min, yielding a two-photon spectral

energy resolution 2h̄∆ω ≈ 0.002 − 0.003 eV. With a change in laser optics, the longer

wavelength range from 800 to 935 nm was scanned in a similar manner. Spectral scans

were repeated with increasing, then decreasing wavelengths to verify that contaminant

adsorption did not influence the SH spectroscopy measurements during data acquisition.

Periodic RHEED and (XPS) measurements indicated no appreciable contamination even

after performing experiments for several days.

Experimental data of Dadap et al. [31] are shown in Fig. 5.3, where we see a series

of room-temperature SHG efficiency RPp spectra of Si(100) as a function of H-coverage

ranging from 0 to 1.5 ML. As H-coverage θH increases, three main features are observed:

a) from 0 to 1 ML the E1 resonance is sharply quenched, while from 1 to 1.5 ML there

is hardly any further decrease in its amplitude; b) as the resonance quenches, its line

shape distorts asymmetrically as a pronounced dip develops on its high energy side and

c) from 0 to 1 ML, the peak redshifts monotonically away from the peak energy at 0 ML

while from 1 to 1.5 ML, the peak blueshifts slightly back towards its 0 ML peak energy

(3.36 eV). Reflection high energy electron diffraction (RHEED) patterns show that the

dimerized 2×1 reconstruction persists for H-coverage up to 1 ML and converts to 1×1

for higher coverage.

5.4 SHG calculations at H-adsorbed Si(100) surface

(H/Si)

We now incorporate the dc-electric field in our theory following the second formulation

described in Sec. 5.2. Within the electric dipole approximation, ~Edc(z) is included phe-

nomenologically into the TB Hamiltonian through a potential energy along z. Relevant

matrix elements were determined through matrix elements of zij (using unperturbed wave

functions), and evaluated by empirical fits to experimental linear optical functions [45].
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Figure 5.4: We show RPp for the clean Si(100) surface with c(4 × 2) reconstruction (solid
line), a Si(100) surface with one H (dashed), with 2 H monohydride phase (dotted), and with
4 H ideally terminated dihydride phase (dotted dashed) per Si-Si dimer. The angle of incidence
θ = 55◦ is the same as in the experiment of Ref. 31. For all curves E0 = 5 × 106 V/cm
and Leff = ao except for the ideal surface, for which E0 = 0 (see text for details). The
experimental spectra of Fig. 5.3 are also shown: the solid line with circles is for the clean
surface, the dashed line with squares is for a surface with one H, the dotted line with diamonds
is for the monohydride surface and the dot-dashed line with triangles is for the dihydride surface.
We indicate with a wide filled circle the maxima of the experimental spectra.

We assume a constant dc-electric field, Edc
z (z) = E0, that point towards vacuum and

extends to a distance Leff . The following results for SHG at Si(100) were obtained.

Figure 5.4 showsRPp vs. the energy of the SH-photon for a clean Si(100) with c(4×2)

surface reconstruction, and for a Si(100) surface with one H, 2 H (monohydride phase),

and 4 H (ideally terminated dihydride phase) per Si-Si dimer, at an angle of incidence

θ = 55◦. In the third and fourth cases all dangling-bonds are H saturated, while in the

first (second) case two (one) unsaturated dangling bond per surface dimer survives. We

have chosen E0 = 5 × 106 V/cm and Leff = ao, which is equivalent to 4 (100) planes,

with ao the lattice constant of Si, i.e the dc field extends four atomic planes. Because of

the formation of the dimer there is a charge transfer to the upper atom of the dimer [83],

thus ~Edc points into the vacuum as the top atom gets more negatively charged.

The E1 peak is clearly seen, and its intensity gets reduced by increasing the number

of H. For this value of E0 and Leff , we see that the peak redshifts 0.05 eV as we move

from the clean surface to the surface with one H per Si-Si dimer. Then, there is another

redshift of 0.03 eV as we move to the monohydride phase, and then an smaller blueshift

as we increase the number of H to finish in the ideally terminated dihydride phase, for

which E0 = 0. This behavior of the E1 peak is in agreement with the experimental
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Figure 5.5: We show RPp vs. two-photon energy for a clean Si(100) with c(4 × 2) surface
reconstruction. Here, Leff = ao, and E0 = 0 (solid line), 2 × 106 V/cm (long dashed),

3×106 V/cm (short dashed) and 5×106 V/cm (dotted), for the case where ~Edc points towards
the vacuum. Also, the dot-dashed line corresponds to the case where ~Edc points towards the
bulk for E0 = 2× 106 V/cm. The E1 resonance of the spectra is indicated by an arrow.

behavior of Fig. 5.3 also shown in Fig.5.4.

In order to justify the values used for E0 and Leff , we have calculated the spectrum

of SHG for a clean Si(100)c(4× 2) surface by varying E0 with Leff fixed and vice versa.

By varying the dc-electric field, we explore the magnitude of the surface dc-electric field

related to H-coverage and by varying Leff we investigate the extension depth of the

surface dc-electric field. Figure 5.5 shows the spectrum for RPp vs. the energy of the

SH-photon for a clean Si(100)c(4× 2) surface with Leff = ao and different values of E0,

along with the case for E0 = 0, i.e. without the dc-electric field. It is observed that as

the value of E0 is increased, for the case of ~Edc pointing towards the vacuum, the E1 peak

blueshifts by 0.1 eV from E0 = 0 to E0 = 5× 106 V/cm. From the same plot, we also see

that if the direction of ~Edc is reversed, i.e. pointing towards bulk, the E1 peak redshifts.

It is worth mentioning that it is the first case the one that corresponds to the correct

physical situation. Besides the correct blueshift of E1, it is also seen that the signal is

enhanced as a function of ~Edc.

On the other hand, Fig. 5.6 shows the spectrum for RPp for a fixed value of E0 =

5 × 106 V/cm and for Leff = ao/4, ao/2 and ao. It is seen that for Leff = ao/4, the E1

peak is only enhanced with respect to the E0 = 0 case, and that for Leff = ao/2 and ao is

also enhanced and shifted to higher energies. This behavior shows that it is sufficient for
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Figure 5.6: Same as Fig. 5.5, but for E0 = 5×106 V/cm, and Leff = ao/4 (short dashed line),
ao/2 (long dashed line) and ao (dotted line), where RPp with E0 = 0 is shown for reference
(solid line).

the ~Edc to penetrate only a few atomic layers in order to give the experimental behavior,

and that the E1 resonance is strongly dependent on the surface details.

From above, it is clear that the presence of the surface dc-electric field ~Edc modifies

the SHG signal of the surface allowed E1 resonance in a physically consistent way and that

its inclusion in the clean and H-covered Si(100) surfaces correctly describes the measured

experimental spectra. This approximate way of including ~Edc, strongly suggests that

there is a built in dc-electric field in the subsurface region of Si. As mentioned above,

this field may be related to the charge transfer that takes place as the surface reconstructs

to lower its energy, and the top Si atom in the dimer gets more negatively charged. An

approach that would take this charge transfer effect into account self-consistently should

in principle reproduce the SHG behavior of the E1 peak for the clean and H-covered

surfaces without the explicit contribution of ~Edc.

In contrast with the observed blueshift of E1 as a function of H coverage at Si(100)

surfaces, a redshift could be observed for other surfaces. This would be seen by reversing

the direction of the dc-electric field, i.e pointing towards the bulk (see. Fig.5.5). For

instance, in the B-doped Si(100) surface, the electronically active B, occupies second

layer Si sites reversing the direction of the vacuum oriented clean surface. The study of

this surface will be the subject of next section.
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5.5 SHG at B-doped Si surfaces (B/Si)

Dopants play an important role in semiconductor technology and growth of surfaces

and interfaces. They not only modify the electronic properties of semiconductors but also

they influence the growth rate and morphology of the manufactured surface. This has

motivated the need for understanding the physical mechanisms by which dopants modify

the electronic properties of surfaces. For instance, B is the most widely used bulk dopant

in Si-based semiconductor technology. Stable two-dimensional layers of highly B-doped

Si with unique structural and electronic properties can be fabricated by depositing B at

Si surfaces. Extensive experimental [129–133] and theoretical [134,135] structural studies

of such layers have shown that B, unlike larger Group III atoms, enters substitutional

sites below the top Si layer, resulting in a strong charge transfer from the surface Si to

the underlying B acceptors. This charge transfer appears to strongly influence the unique

properties of reconstructed B-doped Si(001) [131,134] and B-doped Si(111) [129], notably

their unusual structures, their reduced chemical reactivity compared to clean surfaces

[136–139], and their stability to deposition of Si overlayers, which enables fabrication of

ordered-doped structures [132,140].

Scanning tunneling microscopy (STM) studies made by Wang and Hamers [131] have

revealed that decomposition of diborane and/or decaborane on the Si(100) surfaces pro-

duces several ordered 4×4 reconstructions. Additionally, Headrick et al. [141] reported

the 2×1 surface reconstruction (see. Fig. 5.7). They found that the 2×1 reconstruc-

tion can be preserved within high quality crystalline Si by low-temperature epitaxial

overgrowth at ≈ 300◦C.

Recently surface specific optical techniques such as SHG have been applied to study

adsorbed-covered and doped surfaces [29,31–33,103]. SHG is sensitive at the monolayer

(ML) level to the surface discontinuity of centrosymmetric materials such as Si [16].

Features on the SHG spectrum show unique signatures of 2nd layer B incorporation

which contrast markedly with those of other Si-adsorbate surfaces [31,32,45].

In this thesis, we demonstrate by a microscopic theory, a remarkable contribution of

vertical surface fields originating from charge transfer to electrically active B in governing

SHG spectroscopy. SHG thus complements structure-sensitive probes by directly probing

charge transfer which underlies B/Si surface chemistry.
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Figure 5.7: Schematic diagram of the B-doped Si(100)2×1 reconstructed surface. The dashed
lines shows the symmetrization of the dimer with H adsorption.

5.6 B/Si and H-B/Si SHG experiments

In this section, we describe the SHG experiments performed by D. Lim, M. Downer

and J. Ekerdt at the U. of Texas at Austin on a B/Si and H-covered B/Si (H-B/Si)

surfaces. We mention that these experiments confirm our prediction of Sec. 5.4, by

which the E1 peak blueshifts as we reverse the direction of the ~Edc field from pointing

towards the surface to pointing towards the bulk [34]. The experiments were performed in

an UHV chamber equipped for film growth by CVD and multi-technique surface analysis

[31]. Native oxide is removed by heating the Si(001) sample to 1000◦C. A 0.4µm thick

Si epilayer is then grown by CVD from disilane gas with the sample at 600◦C. After

reflection, high energy electron diffraction (RHEED) will show a clear 2×1 reconstructed

surface, P -polarized SHG spectra is acquired by tuning unamplified, p-polarized, 120 fs

Ti:sapphire laser pulses, which are focused onto the sample at 55◦ incidence angle, from

710 to 800 nm. Fluence is kept low enough (< 0.3 mJ/cm2) that heating and carrier

generation did not influence reflected SHG, which is normalized to a reference SHG

signal [31]. B is then deposited by exposing the surface, at either room temperature

(RT) or 600◦C, to diborane (B2H6) gas. SHG spectra is acquired again. RT exposure

leads to termination of Si dimer dangling bonds by BH2 and H [142]. At 600◦C, B tends

to occupy second layer substitutional sites and to become electrically active, as shown

by scanning tunneling spectroscopy [131,143]. Additional SHG spectra is acquired after

exposing the latter surface (after cooling to 150◦C) to atomic H, generated by cracking

back-filled H2 with a hot tungsten filament. Measurements are repeated with increasing

dosages of B2H6. B coverage θB for 600◦C deposition is calibrated with ∼ 10% accuracy
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Figure 5.8: SH spectra of a) surface B-doped Si(001) and b) H-terminated B/Si(001) surface.
B2H6 exposure are 0 L (plus signs), 2.4 L (crosses), 7.2 L (stars), 12 L (open squares), 24 L
(filled squares), and 48 L (filled circles). Maximum θB ∼ 0.3 ML. Triangles in a) and b) show
SH spectra for bare and H-terminated bulk-B doped samples, respectively. Inset of a): real
time SHG following B2H6 exposure at 600◦C and RT, with B2H6 partial pressure 2×10−7 Torr.
Inset of b): H2 TPD of H-Si(001) and H-B/Si(001).

by terminating this surface with atomic H at 150◦C, then comparing H2 TPD with TPD

of a standard H-B/Si surface for which θB had been independently calibrated by Auger

spectroscopy in a connected surface analysis chamber. For comparison, several 0.3µm

thick epilayers with uniform bulk B doping of several 1018 cm−3 are also grown from B2H6

disilane gas mixtures.

The SHG spectra acquired by the above procedure is shown in Fig. 5.8 for the clean

and H-terminated bulk-doped films. Fig. 5.8a shows SHG spectra of clean Si(001) before

(plus signs) and after (other data sets, except triangles) surface B adsorption at 600◦C for

θB up to ∼ 0.3 ML. The clean Si spectrum shows the surface E1 peak, redshifted (3.34 eV)

from its bulk energy (3.4 eV) [30]. H-termination quenches this feature (Fig. 5.8b, plus

signs) as reported previously [30,31]. As θB increases to 0.3 ML, the SHG signal from the

H-free surface intensifies, and the E1 peak redshifts continuously to ∼ 3.3 eV (Fig. 5.8a).

The SHG signal rises with time constant ∼ 50 s following opening of the B2H6 inlet valve

(see 600◦C curve in inset of Fig. 5.8a), a delay which we attribute to the time for 2nd layer

substitutional B to reach saturation coverage. For very low θB < 0.02 ML, H termination

still quenches the SHG signal as for clean Si(001) (Fig. 5.8a and b: crosses). Surprisingly

for higher θB, H termination intensifies and blueshifts the spectral peak closer to the bulk
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E1 energy (Fig. 5.8b, upper 4 data sets), exactly opposite to the effect of H termination

on clean Si(001) (see Fig. 5.3). H2 TPD spectra for θB = 0 and 0.3 ML (inset of Fig.

5.8b) revealed, in addition to the dihydride β2 (380◦C) and monohydride β1 (500◦C)

features, a broad low temperature (150◦ C to 400◦C) desorption feature, which does not

exist for undoped Si(001), and which has been identified with Si-H bonds weakened by

charge transfer to underlying B back-bonds [117,144]. With increasing θB the latter peak

intensifies at the expense of β2 and β1. After selectively desorbing H associated with this

low temperature feature by annealing the sample at 300◦C, most of the enhanced SH

signal shown in Fig. 5.8b was quenched. Thus H associated with this feature appears to

be responsible for the surprising enhancement of SHG.

Figure 5.8a and 5.8b also show the SHG spectrum from the bare and H-terminated

surface (triangles), respectively, of a bulk-B-doped film. The signal of the bare surface

is 5 times stronger than that from the clean undoped Si and, in contrast with surface

B-doped Si(001), the E1 peak is blueshifted to its bulk energy. This signifies the bulk

origin of the signal via EFISH generation in the depletion region [33]. H termination

quenches and spectrally redshifts the SHG signal - again opposite to the behavior of

surface B-doped Si(001) - because H passivates surface states responsible for Fermi level

pinning [33], thus flattening the bands.

Surface B2H6 adsorption at RT, in contrast with both 600◦C adsorption and bulk

B doping, quenches surface SHG. This can be seen in the real time RT response at

2h̄ω = 3.3 eV shown in the inset of Fig. 5.8a. The ∼ 100 s rise time†reflects primarily the

surface accumulation time of B2H6, which subsequently dissociates into BH2 and H at Si

dimer sites. Clearly the SHG response to second-layer substitutional B differs markedly

from that of either bulk B or non-substitutional surface B2H6 dissociation products.

5.7 B/Si and H-B/Si SHG calculations

The calculation of optical spectra of semiconductor surfaces requires the development

of accurate theories. First principles or ab initio methods are quiet accurate but they are

limited in the number of atoms they can handle, in contrast with the SETB method which

can handle many atoms, and thus has the advantage of being computationally faster.

†The rise time in this context is the time necessary to detect the SHG signal from the surface at
saturation coverage.
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However, both can be used simultaneously to learn about SHG. In this section, we use

them to understand the experimental SHG response of clean and H-covered B/Si(100)

surface as seen in Sec. 5.6.

First, we use the ab initio PP method of Ref. 46 to calculate the SHG spectra.

Pseudopotentials for Si and H are generated by the Bachelet-Hamman-Schlütter (BHS)

scheme [145] using the generalized gradient approximation (GGA). For B, a soft-core

pseudopotential generated by the Troullier-Martins scheme is used [146]. Due to the

quantum-size shift the GGA E1 feature in the Si-slab occurs near 3.4 eV. Therefore no

quasiparticle corrections are needed for PP generated band structure. The surface struc-

ture is modeled as a slab of eight atomic (100) layers. Total energy minimization, using

an energy cutoff of Ecut = 17 Ry, yielded equilibrium atomic positions, according to

the molecular dynamics method. For optical calculations up to Ecut = 31 Ry are used.

Although clean Si is well represented by a 2× 1 unit cell [46], the B-doped surface recon-

structs in multidomain c(4× 4) [134] units. Computing the non-linear optical properties

of such a big unit cell is at present prohibitively lengthy for ab initio methods. Thus

the structural calculation is limited to a 2 × 1 unit cell also for B-doped surfaces, sub-

stituting one B for one second layer Si and two H per surface Si-Si dimer (monohydride)

for H-B/Si (see. Fig. 5.7). Ab initio calculations for other Si-adsorbate systems showed

that main SHG features were reproduced with this model as long as eigenfunctions were

well converged [46]. In addition, using less computationally intensive SETB methods

discussed below, larger unit cells calculations yield similar qualitative behavior [126].

Figure 5.9 shows calculated SHG intensity for clean, B-doped and H-B-doped Si(100)2×
1 surface. For clean Si(100)2 × 1, the E1 feature near 3.4 eV is evident. For B/Si a

stronger, red-shifted peak at 3.3 eV appears, in agreement with experimental results, to-

gether with a second strong peak at 2.8 eV, beyond the experimental range. On H-B/Si,

the former peak blue-shifts to 4.05 eV, the latter to 3.1 eV, and both strengthen. The

qualitative behavior of the higher energy peak clearly mirrors the observed trends shown

in Fig. 5.8. Quantitatively, the blueshift at H-B/Si is much stronger than observed. We

believe the primary reason for this discrepancy is our use of a 2 × 1 cell with one B,

which overestimates maximum θB by about a factor of 2. In fact, the surface monolayers

from which SHG originates become alloyed at our modeled B and H concentrations, so

that calculated peaks in Fig. 5.9 (in particular on H-B/Si) lose identity as Si E1 and E2.

This situation can be remedied only with calculations based on larger unit cells. We also

find that the blueshift at H-B/Si is sensitive to H concentration and bonding site. For
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Figure 5.9: Ab initio calculations of reflected SHG intensity RPp for clean (solid line), B-
doped (dotted line), and H-B-doped (dashed line) Si(001)2 × 1 surface. Arrows identify the
E1-like feature in each curve. The experimental spectra is also shown for comparison: the solid
line with pluses is for the clean surface, the dotted line with crosses is for the B-doped surface
and the dashed line with circles is for the H-B-doped surface.

example, using only 1 H per dimer, above either a Si or B back-bond, we calculate that

the same peaks are less blue-shifted and broader. A mixture of such sites may be present

experimentally.

The results presented in Fig. 5.9 describe the modifications of the SHG response in

terms of chemical hybridization of surface bonds. These calculations make no explicit ref-

erence to the surface dc-electric field Edc
z (z) approaching 107 V/cm, which accompanies

electron transfer from surface Si dimers to second layer B acceptors [131, 143]. Fields

of this strength contribute to SHG in ways which are not completely included in the

present PP calculations, since they significantly redistribute transition momentum (cf.

Franz-Keldysh effect in linear optics) and induce higher-order SH polarization. A com-

plete accounting of these effects requires calculation of SEFISH terms including both

the second- and the third-order optical susceptibilities, χijk and χijkz respectively (first

method described in Sec. 5.2). Nevertheless the results shown in Fig. 5.9 capture the

main qualitative SHG trends observed for B/Si and H-B/Si.

In order to evaluate SEFISH contributions more explicitly, we performed an inde-

pendent SETB calculation (second formalism described in Sec. 5.2) to calculate SHG

spectra of a clean and H covered B/Si(100) surface. For the clean surface, B/Si, the
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Figure 5.10: Panel (a) shows the equilibrium structures of the B/Si surface viewed along
[110]. Open (solid) circles are Si (B) atoms. Panel (b) shows the profile of the surface field
Edcz (z) pointing towards bulk. In panel (c) we show the SETB calculations of RPp for clean
(Edcz (z) = 0) Si(100)2 × 1 (dotted line), Edcz (z) pointing towards the bulk (solid line), and
towards the vacuum (dashed line). The second case corresponds to the B-doped surface. The
solid circles are the experimental results of Fig. 5.8. The arrows show E1.

electron transfer from surface Si dimers to second layer B acceptors [131] brings a surface

dc-electric field Edc
z (z), that approaches 107 V/cm, and points into the bulk of the system

(see Figs. 5.10a and 5.10b). On the other hand, according to ab initio structure calcu-

lations (see above), H termination of B-back-bonded Si dimers symmetrizes the surface

dimer and quenches charge transfer to the second layer B, which should in turn quench

the SEFISH polarization. Nevertheless, B can continue to act as a strong acceptor of

electrons from the underlying bulk. Accompanied by redistribution of the space charge,

this could create a dc-electric field opposite in direction, and deeper in spatial extent

than the step dc-electric field that arises on the B/Si surface, as depicted in Figs. 5.11a

and 5.11b. Its strength and spatial extent depends on band bending as determined by

the relative energies of the acceptor states, which pin the surface Fermi level and the

bulk Fermi level. Since TB parameters for the Si-B bond are not well-established, we

treated B as a Si atom for the SETB calculations, while preserving atomic coordinates

from the ab initio structure calculation.

As shown in Fig. 5.10c the SETB SHG spectrum for clean Si(100)2× 1 clearly shows

the E1 peak. The calculated E1 for B/Si, also shown in Fig. 5.10c, is for a Edc
z (z) directed

inward with a step-function profile and magnitude of 0.9× 107 V/cm terminating at the
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Figure 5.11: Panel (a) shows the equilibrium structures of H-B/Si viewed along [110]. Open
(solid) circles are Si (B) atoms. Panel (b) shows the profile of the surface field Edcz (z) pointing
towards vacuum. In panel (c) we show the SETB calculations of RPp for clean (Edcz (z) = 0)
Si(100)2 × 1 (dotted line), Edcz (z) pointing towards the vacuum (solid line), and towards the
bulk (dashed line). The second case corresponds to the H-B-doped surface. The solid circles
are the experimental results of Fig. 5.8. The arrows show E1.

second layer B (see Fig. 5.10b). We see that in this case E1 is intensified and redshifted

compared to the undoped surface, in qualitative agreement with the measured spectra

shown in the same figure. Similar Edc
z (z) profiles yielded the same qualitative behavior;

reversing the field direction changes the direction of the spectral shift and substantially

alters the intensity and lineshape of the E1 peak (see Sec. 5.4), as can be seen also in

Fig. 5.10c.

As discussed above, for the case of H-B/Si(100), and to illustrate the sensitivity of the

SHG to the field profile changes, we can anticipate field strength comparable to Edc
z (z)

just beneath the second layer B. Indeed, our SETB SHG spectrum for this case shown

in Fig. 5.11c, where we used a Edc
z (z) which starts abruptly at 0.9 × 107 V/cm from

the third layer, and decays exponentially with z (see Figs. 5.11b), shows the E1 peak

blueshifted from the bulk E1 energy and strengthened, in qualitative agreement with the

experimental spectra shown in the same figure. The E1 energy reflects the more bulk-like

origin of the signal and a field-induced blueshift from the surface-directed Edc
z (z). As in

the previous case, reversing the field direction changes the direction of the spectral shift

and substantially alters the intensity and lineshape of the E1 peak, as can be seen also

in Fig. 5.11c.
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Figure 5.12: SETB calculations of RPp for clean (solid line), B-doped (dotted line), and H-
B-doped (dashed line) Si(100)2 × 1. The corresponding experimental data is also shown: the
solid line with pluses is for the clean surface, the dotted line with crosses is for the B-doped
surface and the dashed line with circles is for the H-B-doped surface. The theoretical curves
have been shifted upward by 0.48 eV for better comparison with experimental results. Insets:
equilibrium structures viewed in the [110] direction. Open (solid) circles are Si (B) atoms. The
surface field Edcz (z) points towards bulk and vacuum, respectively, for B/Si (left) and H-B/Si
(right).

We show in Fig. 5.12 the SHG spectra of Figs. 5.10c and 5.11c with the correct

direction of Edc
z (z) along with the experimental data. The SETB SHG spectrum for

clean Si(100)2 × 1 clearly shows the E1 peak (solid curve). The calculated E1 for B/Si

(dotted curve), with Edc
z (z) directed inward with a step function terminating at the

second layer (see Fig. 5.10b), is intensified and redshifted compared to the undoped

surface. For the H-B/Si surface (dashed line) with a exponential decaying function for

Edc
z (z) initiating at the third substitutional B layer (see Fig. 5.11b) and pointing towards

vacuum, the E1 resonance is more intensified and blueshifted compared to the undoped

surface. This behavior is in qualitative agreement with the measured spectra of Fig. 5.8.

5.8 Conclusions

We have presented in this chapter a microscopic calculation of the effect of a surface

dc-electric field on SHG for a clean and H-covered Si(100)c(4×2) surface as well as for

the B-doped Si(100)2×1 and H-B-doped Si(100)2×1 surface. The behavior of the surface

allowed bulk E1 peak is shown to have the correct experimental behavior as a function
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of the surface dc-electric field, strongly suggesting the presence of built in fields in the

subsurface region. SHG spectroscopy yields direct signatures of charge transfer accompa-

nying second layer B incorporation at Si(100) which have been microscopically modeled.

SETB (second formalism) confirms the key role of near-surface electric fields, which could

not be neglected as compared to the effect of the rehybridization of atomic bonds (first

formalism). Our results shed light into the direction for further improvement of the

theory by calculating the ~Edc(z) from the actual charge density.



Chapter 6

Conclusions

In this thesis, we have studied the linear and mainly the non-linear optical response of

Si surfaces through the techniques of reflectance anisotropy (RAS) and second harmonic

generation (SHG). We have studied the clean and H-adsorbed Si(100) surface as well as

the B-doped surface. We have used two approaches to obtain the optical spectra, the

polarizable bond model and a microscopic formulation using the semi-empirical tight-

binding (SETB) method and ab initio calculations. Our results obtained by these models

show a good agreement with the experimental data available at present.

The model of polarizable bonds has been applied to study the surface RAS and SHG

optical spectra of clean Si(100)2×1. It has been found that both RAS and SHG are very

sensitive to the buckling and that in particular a surface with dimer buckling of 0.6 Å

qualitatively reproduces most of the experimental features reported in the literature. By

changing some of the parameters of the model, we concluded that the resonant structures

in RAS and SHG are produced by the atomic reconstruction of the surface through the

local field induced in the sub-surface region. Even though the model does not include

the electronic surface states, the 1.5 eV surface peak is seen in RAS. However, the surface

resonance at 3 eV in SHG is not observed. The spectra for a c(4×2) surface reconstruction

have been also calculated and we found that this surface gives a good SHG E1 resonance

however, it does not give good agreement with RAS. The surface sensitivity shown by this

model is such that, as a further extension of this work, one can refine the dimer geometry

by varying structural parameters and by choosing a few frequencies, like E1 and E2, at

which to fit the spectral features of RAS and SHG. However, this is beyond the scope

of the present thesis. Finally within the polarizable bond model, we see that the 2 × 1
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reconstruction of Si(100) yields a better agreement with experiment than the c(4 × 2)

structure in contrast with the conclusion of the microscopic calculations of Ref. [45]. To

make a direct comparison with the above theoretical results, we suggest that the same

sample should be studied in RAS and SHG spectroscopic experiments.

On the other hand, we have also applied a microscopic formulation to analyze the

different terms that contribute to the total non-linear susceptibility with which we cal-

culate SHG. As an example, the Si(100)c(4×2) surface was analyzed. It has been shown

that taking into account only the χ‖‖⊥ component of the susceptibility tensor in the cal-

culation of SHG yields a spectrum that well resembles the experimental spectrum in the

frequency range from 2 eV to 4 eV. Classifying the 1ω and 2ω contributions of χ‖‖⊥ into

its surface or bulk character, we discussed the energy-space and ~k-space features of the

S0, S1, and E1 resonances. From this analysis, we concluded the following.

The S0 resonance comes from 1ω and 2ω surface-surface transitions across the gap,

whose transitions are to surface virtual states in the conduction band, and it also comes

from 2ω surface-bulk transitions across the gap, whose transitions are to virtual bulk

states in the valence band. The transitions occur from the top to bottom Si of the dimer,

however the transitions to virtual bulk states in the valence band that are part of the

surface-bulk contribution, could be to subsurface atoms (see Fig. 4.14).

The S1 resonance has its origin in 1ω surface-surface transitions across the gap, whose

transitions are to virtual bulk states in the conduction band, and in 2ω bulk-surface

transitions across the gap, whose virtual transitions are to virtual surface states in the

valence band. The 1ω transitions are from the top to the bottom Si of the dimer, and

the 2ω transitions are from a Si in the second plane to either the bottom Si of the dimer

or a Si in the third plane just below the dimer rows (see Fig. 4.16).

The bulk E1 resonance has more contributions than the previous two surface peaks,

but only from 2ω transitions (see Fig. 4.18). They are given by, surface-bulk transitions

across the gap whose transitions are into surface and bulk conduction virtual states,

and bulk-bulk transitions across the gap whose transitions are into bulk conduction or

valence virtual states. Since E1 is a bulk resonance, it is important to remark that it is

strongly affected by the surface, i.e. the E1 transitions are among the bulk atoms and the

lower atoms of the dimer. This fact also shows how the surface breaks the bulk inversion

symmetry readily allowing dipolar SHG (see Fig. 4.18).
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From our analysis it should be clear how the fine interplay of surface and bulk 1ω and

2ω transitions gives the observed SHG spectrum. Also, we emphasize that the bulk or

surface nature of a electronic states does not imply that it belongs to a surface or bulk

atom completely, rather that its wave function is distributed among surface, subsurface

and bulk atoms. The influence of both surface and bulk clearly shows up in the different

terms of the susceptibility that give the SHG spectra, which is a statement of the known

fact that the surface states are bulk perturbed and vice versa.

We emphasize that the analysis to systematically investigate the different contribu-

tions of the non-linear susceptibility to the observed peaks in SHG might be applied for

other surfaces. We remark that such analysis could be carried out using different ap-

proaches to calculate the one-electron energies and momentum matrix elements required

for the evaluation of the non-linear susceptibility.

We have also applied the microscopic calculation of Chap. 4 to study the effect of

a surface dc-electric field on SHG for Si(100) clean and H covered surfaces. On one

hand, the adsorption of H on the clean surface was studied. The behavior of the surface

allowed bulk E1 peak is shown to have the correct experimental behavior as a function

of the surface dc-electric field, strongly suggesting the presence of built in fields in the

subsurface region. Also, the spectral differences as a function of ~Edc make SHG a useful

optical probe for it. We find a behavior of E1 which would be very interesting to study

experimentally in more detail.

On the other hand, adsorption of H and incorporation of B on Si surface was also

studied. SHG spectroscopy yields direct signatures of charge transfer accompanying

second layer B incorporation at Si(001) which have been microscopically modeled. SETB

confirms the key role of near-surface electric fields, which could not be neglected as

compared to the effect of the rehybridization of atomic bonds. Our results shed light

into the direction for further improvement of the theory by calculating the ~Edc(z) from

the actual charge density, then incorporating its effect through a surface EFISH χijkl (see

Chap. 5).

From the above conclusions, we can understand within the approach of Chap. 4 some

of the general features seen in SHG from this surface when it is covered by other species

of atoms. For instance, as a function of H termination of the surface, the dimer first

symmetrizes and then breaks, disrupting the dimer related states, and thus quenching the

surface resonances (see Chap. 5). However the E1 resonance, being less sensitive to the
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dimer as it involves transitions among subsurface atoms, does not disappear completely.

This is the behavior seen in the experiments [31] and in the theoretical spectra [45]. On

the other hand, B adsorption on this surface shows a very interesting behavior for the

E1 resonance (see. Chap. 5). Since B goes to second layer Si sites, its influence is not

of quenching, but rather of redshifting the position of E1 and of increasing its intensity,

since it interacts with the subsurface atoms as well as the bottom Si of the dimer.

Experiments over a wider spectral range, and calculations based on more accurate

structural units, will also improve quantitative interpretation of the spectroscopy. We

mention that local-field and excitonic effects along with the surface screening will prove

to be crucial for a quantitative comparison between theory and experiment.

Finally, we conclude that the optical techniques RAS and SHG are very versatile

surface sensitive probes to analyze surfaces and interfaces, which offer unique advantages

over other surface probes: they are coherent probes, they do not require ultra-high vac-

uum (UHV) environments, they are non-invasive, non-destructive and have wide spectral

coverage as well.

Experimental and theoretical studies of surfaces by using optical techniques have

been developed rapidly. This research has contributed significantly in the last years

to understand the optical physical processes that take place at surfaces. This is very

important for the development of new electronic devices. Currently, we are not yet able

to apply this kind of techniques to control the quality of manufacture of surfaces for a

device in a manufacture plant. However the rapid evolving research in this direction

makes the optical techniques to be a promising tool [147].

The transistor revolutionized the electronics and has made possible to built novel

devices. We expect, in the forthcoming years, that the optical techniques of RAS and

SHG will allow surface science research to develop much more impressive and novel

electronic devices.
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Optical spectroscopy: potential

applications

The following discussion has been taken from Ref. 147 and is intended to emphasize

the potential that the optical spectroscopy has for controlling semiconductor epitaxial

growth.

The drive towards higher performance and increasing complexity in semiconductor

devices, together with the trend towards chemical beam deposition (CVD) methods such

as organometallic CVD and chemical beam epitaxy, are providing strong incentives to

develop a better understanding of growth processes and better methods of monitoring∗

growth. Real-time information about a growing crystal is useful for various reasons,

including a posteriori diagnosis of failed devices. Much effort is presently being directed

toward developing predictive approaches and to base process decisions on information

about the growing sample itself, leading ultimately to sample-driven closed-loop feedback

control† of epitaxy.

Optical probes are of interest for sample-driven applications because they are nonde-

structive, noninvasive, and can be used in any transparent ambient. Recent effort has

gone into developing optical techniques sensitive to surface processes. Those that are

relatively new include reflectance anisotropy spectroscopy (RAS), reflectance difference

∗By monitoring we refer to the real-time determination of information about the process (ambient),
sample surface, and/or the sample itself.
†By control we refer to the use of information about the process (ambient), sample surface, and/or

the sample itself to make real-time decisions about modifications of growth or deposition parameters.
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spectroscopy (RDS), laser light scattering (LLS) second harmonic generation generation

(SHG). These techniques rely on symmetry to suppress the bulk response in favor of the

surface component.

The parameters needed to characterize growth may be classified as follows: a) bulk

parameters: layer thickness, compositions, and uniformities; b) surface-determined pa-

rameters: efficiency of dopant incorporation, possibility of atomic ordering of nominally

random alloys. interface widths, etc. and c) tertiary parameters which are those related

to the process itself, for example pressure, and flow rate of the carrier gas, the partial

pressures of active species, temperature of the sample etc.

Our ability to use these parameters for control is predicated on our capability of

obtaining information about them. Process-directed measurements include temperature

determinations by thermocouples and ambient-composition determinations by laser in-

duced fluorescence, infrared absorption spectroscopy, coherent anti-Stokes Raman scat-

tering, ultraviolet absorption spectroscopy, and mass spectrometry. Surface information

can be obtain by RAS, RDS, surface photoabsorption, LLS, SHG, and in ultra-high vac-

uum environments (UHV), reflection high energy electron diffraction (RHEED). Bulk

probes include spectroreflectometry, spectroscopic ellipsometric, photoreflectance, and

various imaging techniques.

Considerable progress has been made in the control of semiconductor epitaxy. How-

ever a number of challenges remain. A major challenge, particularly with respect to

quaternary material such as InxGa1−xAs1−yPy, is to enhance signal-to-noise ratios to

where anion as well as cation compositions can be determined, especially in actual re-

actors where samples are rotated for uniformity and mechanical vibration may occur as

well.

Surface-optical spectra must also be interpreted to achieve a quantitative understand-

ing of growth chemistry. The quartz-optics spectral range, about 1.5 to 6.0 eV, is severely

limited. Without a suitable atlas of visible-near ultraviolet spectra of surface species

it has been necessary to rely on the theoretical calculations. The task of calculating

surface-optical spectra is difficult even in the linear approximation, and recent experi-

ments suggest that non-local and many-body effects must be considered as well.

The biggest challenge will be to win acceptance of the theoretical approaches used to

describe surface processes in production. The major objective of growth is the production



109

of devices, and success is measured in new capabilities and improved yields. It is unlikely

that the advances made so far, particularly any but the simplest, will be accepted until

improved yields are demonstrated or devices that cannot currently be fabricated are

produced. Although considerable progress has been made, much remain to be done

before these techniques become viable production tools.
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Appendix B

List of abbreviations

2DBZ Two Dimensional Brillouin Zone

AES Auger Electron Spectroscopy

B/Si B-doped Si

CVD Chemical Vapor Deposition

dc Direct Current

DFG Difference Frequency Generation

DFT Density Functional Theory

DFT-LDA Density Functional Theory within the Local Density

Approximation

DRS Differential Reflectance Spectroscopy

EFISH Electric-field-induced Second Harmonic

HREELS High-resolution Electron-energy-loss Spectroscopy

H-B/Si H-adsorbed and B-doped Si

LDA Local Density Approximation

LEED Low Energy Electron Diffraction

LLS Laser Light Scattering

ML Monolayer

PP Pseudopotential

RAS Reflectance Anisotropy Spectroscopy

RDS Reflectance Difference Spectroscopy

RT Room Temperature

RHEED Reflection High Energy Electron Diffraction

SETB Semi-empirical Tight-binding
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SDR Surface Differential Reflectivity

SH Second Harmonic

SHG Second Harmonic Generation

SFG Sum Frequency Generation

STM Scanning Tunneling Microscopy

TB Tight-Binding

TPD Temperature Programmed Desorption

TDLDA Time Dependent Local Density Approximation

UHV Ultra-high Vacuum

XPS X-ray Photoemission or Photoelectron Spectroscopy
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List of symbols

a Distance between crystal planes

ao Lattice constant
~A Vector potential

A Area

aB Bohr Radius
↔
α Linear polarizability tensor

α‖ Parallel component of the linear polarizability

α⊥ Perpendicular component of the linear polarizability

c Speed of light

d Layer thickness
~D Displacement electric field

δ(z) Dirac’s delta

∆ε Perturbation to the dielectric function

∆R Difference in reflectance of light

∆Rx Reflectance of light polarized along x

∆Ry Reflectance of light polarized along y

e Electron charge

ê Unitary vector
~E Electromagnetic field vector
~E Local field
~E(A, ω) External electric field
~E(B,ω) Electric field inside the medium
~Eext External field
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~Edc Surface dc-electric field

Edc
z z component of the surface dc-electric field

Eat Atomic electric field

En Energy

Enr Difference of energy between the states En and Er

E0 Magnitude of the surface dc-electric field

ε Dielectric function

εs Surface dielectric function

εb Bulk dielectric function

Ĥ0 Unperturbed Hamiltonian

I Intensity of light

~̂J Induced current operator
~k Wave vector

Leff Effective depth

λ Wave length

m Electron mass
↔
M Dipolar interaction tensor of second rank

n0 Electron density
↔
N Dipolar interaction tensor of third rank

ω Frequency

ωc Damping frequency

ωp Plasma frequency

ω‖ Frequency corresponding to the parallel response

ω⊥ Frequency corresponding to the perpendicular response

~p(ω) First order induced dipole moment

~p(2ω) Second-order induced dipole moment

~̂p Momentum operator
~P Polarization

P tot Total polarization
~P Modified momentum operator
~P Dipole moment per unit volume
~Pb Bulk polarization
~P (B,ω) Bulk polarization
~Peff Effective polarization

P i
sn Matrix element of the i-component of the momentum operator

between states s and n
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ψ(n) Wave function of order n

ψ(0) Ground state wave function

φ Tight-binding wave function

ϕ̂ Potential energy
↔
Q Second-order induced quadrupole moment
↔
Q Electric quadrupolar polarization

~r Position

R Second harmonic generation efficiency

R0 Fresnel reflection coefficient
~S Non-linear source

σ Surface charge density

t Time

Ti Transmission Fresnel factor for light with i polarization

θ Angle of incidence

V Perturbing potential

W Weight

X Second-order nonlinear susceptibility for a single domain surface
↔
χ Second-order nonlinear susceptibility tensor
↔
χ(d) Dipolar microscopic second-order susceptibility tensor
↔
χeff Effective non-linear susceptibility
↔
χ(m) Magnetic microscopic second-order susceptibility tensor
↔
χ(Q) Quadrupolar microscopic second-order susceptibility tensor

znn′ Intra-atomic matrix elements for the atomic z-coordinate
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